mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-07-22 21:04:28 +08:00
230 lines
8.7 KiB
C++
230 lines
8.7 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_CONJUGATE_GRADIENT_H
|
|
#define EIGEN_CONJUGATE_GRADIENT_H
|
|
|
|
namespace Eigen {
|
|
|
|
namespace internal {
|
|
|
|
/** \internal Low-level conjugate gradient algorithm
|
|
* \param mat The matrix A
|
|
* \param rhs The right hand side vector b
|
|
* \param x On input and initial solution, on output the computed solution.
|
|
* \param precond A preconditioner being able to efficiently solve for an
|
|
* approximation of Ax=b (regardless of b)
|
|
* \param iters On input the max number of iteration, on output the number of performed iterations.
|
|
* \param tol_error On input the tolerance error, on output an estimation of the relative error.
|
|
*/
|
|
template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
|
|
EIGEN_DONT_INLINE
|
|
void conjugate_gradient(const MatrixType& mat, const Rhs& rhs, Dest& x,
|
|
const Preconditioner& precond, Index& iters,
|
|
typename Dest::RealScalar& tol_error)
|
|
{
|
|
using std::sqrt;
|
|
using std::abs;
|
|
typedef typename Dest::RealScalar RealScalar;
|
|
typedef typename Dest::Scalar Scalar;
|
|
typedef Matrix<Scalar,Dynamic,1> VectorType;
|
|
|
|
RealScalar tol = tol_error;
|
|
Index maxIters = iters;
|
|
|
|
Index n = mat.cols();
|
|
|
|
VectorType residual = rhs - mat * x; //initial residual
|
|
|
|
RealScalar rhsNorm2 = rhs.squaredNorm();
|
|
if(rhsNorm2 == 0)
|
|
{
|
|
x.setZero();
|
|
iters = 0;
|
|
tol_error = 0;
|
|
return;
|
|
}
|
|
const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)();
|
|
RealScalar threshold = numext::maxi(RealScalar(tol*tol*rhsNorm2),considerAsZero);
|
|
RealScalar residualNorm2 = residual.squaredNorm();
|
|
if (residualNorm2 < threshold)
|
|
{
|
|
iters = 0;
|
|
tol_error = sqrt(residualNorm2 / rhsNorm2);
|
|
return;
|
|
}
|
|
|
|
VectorType p(n);
|
|
p = precond.solve(residual); // initial search direction
|
|
|
|
VectorType z(n), tmp(n);
|
|
RealScalar absNew = numext::real(residual.dot(p)); // the square of the absolute value of r scaled by invM
|
|
Index i = 0;
|
|
while(i < maxIters)
|
|
{
|
|
tmp.noalias() = mat * p; // the bottleneck of the algorithm
|
|
|
|
Scalar alpha = absNew / p.dot(tmp); // the amount we travel on dir
|
|
x += alpha * p; // update solution
|
|
residual -= alpha * tmp; // update residual
|
|
|
|
residualNorm2 = residual.squaredNorm();
|
|
if(residualNorm2 < threshold)
|
|
break;
|
|
|
|
z = precond.solve(residual); // approximately solve for "A z = residual"
|
|
|
|
RealScalar absOld = absNew;
|
|
absNew = numext::real(residual.dot(z)); // update the absolute value of r
|
|
RealScalar beta = absNew / absOld; // calculate the Gram-Schmidt value used to create the new search direction
|
|
p = z + beta * p; // update search direction
|
|
i++;
|
|
}
|
|
tol_error = sqrt(residualNorm2 / rhsNorm2);
|
|
iters = i;
|
|
}
|
|
|
|
}
|
|
|
|
template< typename MatrixType_, int UpLo_=Lower,
|
|
typename Preconditioner_ = DiagonalPreconditioner<typename MatrixType_::Scalar> >
|
|
class ConjugateGradient;
|
|
|
|
namespace internal {
|
|
|
|
template< typename MatrixType_, int UpLo_, typename Preconditioner_>
|
|
struct traits<ConjugateGradient<MatrixType_,UpLo_,Preconditioner_> >
|
|
{
|
|
typedef MatrixType_ MatrixType;
|
|
typedef Preconditioner_ Preconditioner;
|
|
};
|
|
|
|
}
|
|
|
|
/** \ingroup IterativeLinearSolvers_Module
|
|
* \brief A conjugate gradient solver for sparse (or dense) self-adjoint problems
|
|
*
|
|
* This class allows to solve for A.x = b linear problems using an iterative conjugate gradient algorithm.
|
|
* The matrix A must be selfadjoint. The matrix A and the vectors x and b can be either dense or sparse.
|
|
*
|
|
* \tparam MatrixType_ the type of the matrix A, can be a dense or a sparse matrix.
|
|
* \tparam UpLo_ the triangular part that will be used for the computations. It can be Lower,
|
|
* \c Upper, or \c Lower|Upper in which the full matrix entries will be considered.
|
|
* Default is \c Lower, best performance is \c Lower|Upper.
|
|
* \tparam Preconditioner_ the type of the preconditioner. Default is DiagonalPreconditioner
|
|
*
|
|
* \implsparsesolverconcept
|
|
*
|
|
* The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
|
|
* and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
|
|
* and NumTraits<Scalar>::epsilon() for the tolerance.
|
|
*
|
|
* The tolerance corresponds to the relative residual error: |Ax-b|/|b|
|
|
*
|
|
* \b Performance: Even though the default value of \c UpLo_ is \c Lower, significantly higher performance is
|
|
* achieved when using a complete matrix and \b Lower|Upper as the \a UpLo_ template parameter. Moreover, in this
|
|
* case multi-threading can be exploited if the user code is compiled with OpenMP enabled.
|
|
* See \ref TopicMultiThreading for details.
|
|
*
|
|
* This class can be used as the direct solver classes. Here is a typical usage example:
|
|
\code
|
|
int n = 10000;
|
|
VectorXd x(n), b(n);
|
|
SparseMatrix<double> A(n,n);
|
|
// fill A and b
|
|
ConjugateGradient<SparseMatrix<double>, Lower|Upper> cg;
|
|
cg.compute(A);
|
|
x = cg.solve(b);
|
|
std::cout << "#iterations: " << cg.iterations() << std::endl;
|
|
std::cout << "estimated error: " << cg.error() << std::endl;
|
|
// update b, and solve again
|
|
x = cg.solve(b);
|
|
\endcode
|
|
*
|
|
* By default the iterations start with x=0 as an initial guess of the solution.
|
|
* One can control the start using the solveWithGuess() method.
|
|
*
|
|
* ConjugateGradient can also be used in a matrix-free context, see the following \link MatrixfreeSolverExample example \endlink.
|
|
*
|
|
* \sa class LeastSquaresConjugateGradient, class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
|
|
*/
|
|
template< typename MatrixType_, int UpLo_, typename Preconditioner_>
|
|
class ConjugateGradient : public IterativeSolverBase<ConjugateGradient<MatrixType_,UpLo_,Preconditioner_> >
|
|
{
|
|
typedef IterativeSolverBase<ConjugateGradient> Base;
|
|
using Base::matrix;
|
|
using Base::m_error;
|
|
using Base::m_iterations;
|
|
using Base::m_info;
|
|
using Base::m_isInitialized;
|
|
public:
|
|
typedef MatrixType_ MatrixType;
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename MatrixType::RealScalar RealScalar;
|
|
typedef Preconditioner_ Preconditioner;
|
|
|
|
enum {
|
|
UpLo = UpLo_
|
|
};
|
|
|
|
public:
|
|
|
|
/** Default constructor. */
|
|
ConjugateGradient() : Base() {}
|
|
|
|
/** Initialize the solver with matrix \a A for further \c Ax=b solving.
|
|
*
|
|
* This constructor is a shortcut for the default constructor followed
|
|
* by a call to compute().
|
|
*
|
|
* \warning this class stores a reference to the matrix A as well as some
|
|
* precomputed values that depend on it. Therefore, if \a A is changed
|
|
* this class becomes invalid. Call compute() to update it with the new
|
|
* matrix A, or modify a copy of A.
|
|
*/
|
|
template<typename MatrixDerived>
|
|
explicit ConjugateGradient(const EigenBase<MatrixDerived>& A) : Base(A.derived()) {}
|
|
|
|
~ConjugateGradient() {}
|
|
|
|
/** \internal */
|
|
template<typename Rhs,typename Dest>
|
|
void _solve_vector_with_guess_impl(const Rhs& b, Dest& x) const
|
|
{
|
|
typedef typename Base::MatrixWrapper MatrixWrapper;
|
|
typedef typename Base::ActualMatrixType ActualMatrixType;
|
|
enum {
|
|
TransposeInput = (!MatrixWrapper::MatrixFree)
|
|
&& (UpLo==(Lower|Upper))
|
|
&& (!MatrixType::IsRowMajor)
|
|
&& (!NumTraits<Scalar>::IsComplex)
|
|
};
|
|
typedef typename internal::conditional<TransposeInput,Transpose<const ActualMatrixType>, ActualMatrixType const&>::type RowMajorWrapper;
|
|
EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(MatrixWrapper::MatrixFree,UpLo==(Lower|Upper)),MATRIX_FREE_CONJUGATE_GRADIENT_IS_COMPATIBLE_WITH_UPPER_UNION_LOWER_MODE_ONLY);
|
|
typedef typename internal::conditional<UpLo==(Lower|Upper),
|
|
RowMajorWrapper,
|
|
typename MatrixWrapper::template ConstSelfAdjointViewReturnType<UpLo>::Type
|
|
>::type SelfAdjointWrapper;
|
|
|
|
m_iterations = Base::maxIterations();
|
|
m_error = Base::m_tolerance;
|
|
|
|
RowMajorWrapper row_mat(matrix());
|
|
internal::conjugate_gradient(SelfAdjointWrapper(row_mat), b, x, Base::m_preconditioner, m_iterations, m_error);
|
|
m_info = m_error <= Base::m_tolerance ? Success : NoConvergence;
|
|
}
|
|
|
|
protected:
|
|
|
|
};
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_CONJUGATE_GRADIENT_H
|