mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-23 01:59:38 +08:00
150 lines
4.9 KiB
C++
150 lines
4.9 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include "lapack_common.h"
|
|
#include <Eigen/SVD>
|
|
|
|
#if ISCOMPLEX
|
|
#define EIGEN_LAPACK_ARG_IF_COMPLEX(X) X,
|
|
#else
|
|
#define EIGEN_LAPACK_ARG_IF_COMPLEX(X)
|
|
#endif
|
|
|
|
// computes the singular values/vectors a general M-by-N matrix A using divide-and-conquer
|
|
EIGEN_LAPACK_FUNC(gesdd)
|
|
(char *jobz, int *m, int *n, Scalar *a, int *lda, RealScalar *s, Scalar *u, int *ldu, Scalar *vt, int *ldvt,
|
|
Scalar * /*work*/, int *lwork, EIGEN_LAPACK_ARG_IF_COMPLEX(RealScalar * /*rwork*/) int * /*iwork*/, int *info) {
|
|
// TODO exploit the work buffer
|
|
bool query_size = *lwork == -1;
|
|
int diag_size = (std::min)(*m, *n);
|
|
|
|
*info = 0;
|
|
if (*jobz != 'A' && *jobz != 'S' && *jobz != 'O' && *jobz != 'N')
|
|
*info = -1;
|
|
else if (*m < 0)
|
|
*info = -2;
|
|
else if (*n < 0)
|
|
*info = -3;
|
|
else if (*lda < std::max(1, *m))
|
|
*info = -5;
|
|
else if (*lda < std::max(1, *m))
|
|
*info = -8;
|
|
else if (*ldu < 1 || (*jobz == 'A' && *ldu < *m) || (*jobz == 'O' && *m < *n && *ldu < *m))
|
|
*info = -8;
|
|
else if (*ldvt < 1 || (*jobz == 'A' && *ldvt < *n) || (*jobz == 'S' && *ldvt < diag_size) ||
|
|
(*jobz == 'O' && *m >= *n && *ldvt < *n))
|
|
*info = -10;
|
|
|
|
if (*info != 0) {
|
|
int e = -*info;
|
|
return xerbla_(SCALAR_SUFFIX_UP "GESDD ", &e);
|
|
}
|
|
|
|
if (query_size) {
|
|
*lwork = 0;
|
|
return;
|
|
}
|
|
|
|
if (*n == 0 || *m == 0) return;
|
|
|
|
PlainMatrixType mat(*m, *n);
|
|
mat = matrix(a, *m, *n, *lda);
|
|
|
|
int option = *jobz == 'A' ? Eigen::ComputeFullU | Eigen::ComputeFullV
|
|
: *jobz == 'S' ? Eigen::ComputeThinU | Eigen::ComputeThinV
|
|
: *jobz == 'O' ? Eigen::ComputeThinU | Eigen::ComputeThinV
|
|
: 0;
|
|
|
|
Eigen::BDCSVD<PlainMatrixType> svd(mat, option);
|
|
|
|
make_vector(s, diag_size) = svd.singularValues().head(diag_size);
|
|
|
|
if (*jobz == 'A') {
|
|
matrix(u, *m, *m, *ldu) = svd.matrixU();
|
|
matrix(vt, *n, *n, *ldvt) = svd.matrixV().adjoint();
|
|
} else if (*jobz == 'S') {
|
|
matrix(u, *m, diag_size, *ldu) = svd.matrixU();
|
|
matrix(vt, diag_size, *n, *ldvt) = svd.matrixV().adjoint();
|
|
} else if (*jobz == 'O' && *m >= *n) {
|
|
matrix(a, *m, *n, *lda) = svd.matrixU();
|
|
matrix(vt, *n, *n, *ldvt) = svd.matrixV().adjoint();
|
|
} else if (*jobz == 'O') {
|
|
matrix(u, *m, *m, *ldu) = svd.matrixU();
|
|
matrix(a, diag_size, *n, *lda) = svd.matrixV().adjoint();
|
|
}
|
|
}
|
|
|
|
// computes the singular values/vectors a general M-by-N matrix A using two sided jacobi algorithm
|
|
EIGEN_LAPACK_FUNC(gesvd)
|
|
(char *jobu, char *jobv, int *m, int *n, Scalar *a, int *lda, RealScalar *s, Scalar *u, int *ldu, Scalar *vt, int *ldvt,
|
|
Scalar * /*work*/, int *lwork, EIGEN_LAPACK_ARG_IF_COMPLEX(RealScalar * /*rwork*/) int *info) {
|
|
// TODO exploit the work buffer
|
|
bool query_size = *lwork == -1;
|
|
int diag_size = (std::min)(*m, *n);
|
|
|
|
*info = 0;
|
|
if (*jobu != 'A' && *jobu != 'S' && *jobu != 'O' && *jobu != 'N')
|
|
*info = -1;
|
|
else if ((*jobv != 'A' && *jobv != 'S' && *jobv != 'O' && *jobv != 'N') || (*jobu == 'O' && *jobv == 'O'))
|
|
*info = -2;
|
|
else if (*m < 0)
|
|
*info = -3;
|
|
else if (*n < 0)
|
|
*info = -4;
|
|
else if (*lda < std::max(1, *m))
|
|
*info = -6;
|
|
else if (*ldu < 1 || ((*jobu == 'A' || *jobu == 'S') && *ldu < *m))
|
|
*info = -9;
|
|
else if (*ldvt < 1 || (*jobv == 'A' && *ldvt < *n) || (*jobv == 'S' && *ldvt < diag_size))
|
|
*info = -11;
|
|
|
|
if (*info != 0) {
|
|
int e = -*info;
|
|
return xerbla_(SCALAR_SUFFIX_UP "GESVD ", &e);
|
|
}
|
|
|
|
if (query_size) {
|
|
*lwork = 0;
|
|
return;
|
|
}
|
|
|
|
if (*n == 0 || *m == 0) return;
|
|
|
|
PlainMatrixType mat(*m, *n);
|
|
mat = matrix(a, *m, *n, *lda);
|
|
|
|
int option = (*jobu == 'A' ? Eigen::ComputeFullU
|
|
: *jobu == 'S' || *jobu == 'O' ? Eigen::ComputeThinU
|
|
: 0) |
|
|
(*jobv == 'A' ? Eigen::ComputeFullV
|
|
: *jobv == 'S' || *jobv == 'O' ? Eigen::ComputeThinV
|
|
: 0);
|
|
|
|
Eigen::JacobiSVD<PlainMatrixType> svd(mat, option);
|
|
|
|
make_vector(s, diag_size) = svd.singularValues().head(diag_size);
|
|
{
|
|
if (*jobu == 'A')
|
|
matrix(u, *m, *m, *ldu) = svd.matrixU();
|
|
else if (*jobu == 'S')
|
|
matrix(u, *m, diag_size, *ldu) = svd.matrixU();
|
|
else if (*jobu == 'O')
|
|
matrix(a, *m, diag_size, *lda) = svd.matrixU();
|
|
}
|
|
{
|
|
if (*jobv == 'A')
|
|
matrix(vt, *n, *n, *ldvt) = svd.matrixV().adjoint();
|
|
else if (*jobv == 'S')
|
|
matrix(vt, diag_size, *n, *ldvt) = svd.matrixV().adjoint();
|
|
else if (*jobv == 'O')
|
|
matrix(a, diag_size, *n, *lda) = svd.matrixV().adjoint();
|
|
}
|
|
}
|
|
|
|
#undef EIGEN_LAPACK_ARG_IF_COMPLEX |