mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-29 23:34:12 +08:00
371 lines
13 KiB
C++
371 lines
13 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_SPARSE_COMPRESSED_BASE_H
|
|
#define EIGEN_SPARSE_COMPRESSED_BASE_H
|
|
|
|
namespace Eigen {
|
|
|
|
template<typename Derived> class SparseCompressedBase;
|
|
|
|
namespace internal {
|
|
|
|
template<typename Derived>
|
|
struct traits<SparseCompressedBase<Derived> > : traits<Derived>
|
|
{};
|
|
|
|
} // end namespace internal
|
|
|
|
/** \ingroup SparseCore_Module
|
|
* \class SparseCompressedBase
|
|
* \brief Common base class for sparse [compressed]-{row|column}-storage format.
|
|
*
|
|
* This class defines the common interface for all derived classes implementing the compressed sparse storage format, such as:
|
|
* - SparseMatrix
|
|
* - Ref<SparseMatrixType,Options>
|
|
* - Map<SparseMatrixType>
|
|
*
|
|
*/
|
|
template<typename Derived>
|
|
class SparseCompressedBase
|
|
: public SparseMatrixBase<Derived>
|
|
{
|
|
public:
|
|
typedef SparseMatrixBase<Derived> Base;
|
|
EIGEN_SPARSE_PUBLIC_INTERFACE(SparseCompressedBase)
|
|
using Base::operator=;
|
|
using Base::IsRowMajor;
|
|
|
|
class InnerIterator;
|
|
class ReverseInnerIterator;
|
|
|
|
protected:
|
|
typedef typename Base::IndexVector IndexVector;
|
|
Eigen::Map<IndexVector> innerNonZeros() { return Eigen::Map<IndexVector>(innerNonZeroPtr(), isCompressed()?0:derived().outerSize()); }
|
|
const Eigen::Map<const IndexVector> innerNonZeros() const { return Eigen::Map<const IndexVector>(innerNonZeroPtr(), isCompressed()?0:derived().outerSize()); }
|
|
|
|
public:
|
|
|
|
/** \returns the number of non zero coefficients */
|
|
inline Index nonZeros() const
|
|
{
|
|
if(Derived::IsVectorAtCompileTime && outerIndexPtr()==0)
|
|
return derived().nonZeros();
|
|
else if(isCompressed())
|
|
return outerIndexPtr()[derived().outerSize()]-outerIndexPtr()[0];
|
|
else if(derived().outerSize()==0)
|
|
return 0;
|
|
else
|
|
return innerNonZeros().sum();
|
|
}
|
|
|
|
/** \returns a const pointer to the array of values.
|
|
* This function is aimed at interoperability with other libraries.
|
|
* \sa innerIndexPtr(), outerIndexPtr() */
|
|
inline const Scalar* valuePtr() const { return derived().valuePtr(); }
|
|
/** \returns a non-const pointer to the array of values.
|
|
* This function is aimed at interoperability with other libraries.
|
|
* \sa innerIndexPtr(), outerIndexPtr() */
|
|
inline Scalar* valuePtr() { return derived().valuePtr(); }
|
|
|
|
/** \returns a const pointer to the array of inner indices.
|
|
* This function is aimed at interoperability with other libraries.
|
|
* \sa valuePtr(), outerIndexPtr() */
|
|
inline const StorageIndex* innerIndexPtr() const { return derived().innerIndexPtr(); }
|
|
/** \returns a non-const pointer to the array of inner indices.
|
|
* This function is aimed at interoperability with other libraries.
|
|
* \sa valuePtr(), outerIndexPtr() */
|
|
inline StorageIndex* innerIndexPtr() { return derived().innerIndexPtr(); }
|
|
|
|
/** \returns a const pointer to the array of the starting positions of the inner vectors.
|
|
* This function is aimed at interoperability with other libraries.
|
|
* \warning it returns the null pointer 0 for SparseVector
|
|
* \sa valuePtr(), innerIndexPtr() */
|
|
inline const StorageIndex* outerIndexPtr() const { return derived().outerIndexPtr(); }
|
|
/** \returns a non-const pointer to the array of the starting positions of the inner vectors.
|
|
* This function is aimed at interoperability with other libraries.
|
|
* \warning it returns the null pointer 0 for SparseVector
|
|
* \sa valuePtr(), innerIndexPtr() */
|
|
inline StorageIndex* outerIndexPtr() { return derived().outerIndexPtr(); }
|
|
|
|
/** \returns a const pointer to the array of the number of non zeros of the inner vectors.
|
|
* This function is aimed at interoperability with other libraries.
|
|
* \warning it returns the null pointer 0 in compressed mode */
|
|
inline const StorageIndex* innerNonZeroPtr() const { return derived().innerNonZeroPtr(); }
|
|
/** \returns a non-const pointer to the array of the number of non zeros of the inner vectors.
|
|
* This function is aimed at interoperability with other libraries.
|
|
* \warning it returns the null pointer 0 in compressed mode */
|
|
inline StorageIndex* innerNonZeroPtr() { return derived().innerNonZeroPtr(); }
|
|
|
|
/** \returns whether \c *this is in compressed form. */
|
|
inline bool isCompressed() const { return innerNonZeroPtr()==0; }
|
|
|
|
/** \returns a read-only view of the stored coefficients as a 1D array expression.
|
|
*
|
|
* \warning this method is for \b compressed \b storage \b only, and it will trigger an assertion otherwise.
|
|
*
|
|
* \sa valuePtr(), isCompressed() */
|
|
const Map<const Array<Scalar,Dynamic,1> > coeffs() const { eigen_assert(isCompressed()); return Array<Scalar,Dynamic,1>::Map(valuePtr(),nonZeros()); }
|
|
|
|
/** \returns a read-write view of the stored coefficients as a 1D array expression
|
|
*
|
|
* \warning this method is for \b compressed \b storage \b only, and it will trigger an assertion otherwise.
|
|
*
|
|
* Here is an example:
|
|
* \include SparseMatrix_coeffs.cpp
|
|
* and the output is:
|
|
* \include SparseMatrix_coeffs.out
|
|
*
|
|
* \sa valuePtr(), isCompressed() */
|
|
Map<Array<Scalar,Dynamic,1> > coeffs() { eigen_assert(isCompressed()); return Array<Scalar,Dynamic,1>::Map(valuePtr(),nonZeros()); }
|
|
|
|
protected:
|
|
/** Default constructor. Do nothing. */
|
|
SparseCompressedBase() {}
|
|
|
|
/** \internal return the index of the coeff at (row,col) or just before if it does not exist.
|
|
* This is an analogue of std::lower_bound.
|
|
*/
|
|
internal::LowerBoundIndex lower_bound(Index row, Index col) const
|
|
{
|
|
eigen_internal_assert(row>=0 && row<this->rows() && col>=0 && col<this->cols());
|
|
|
|
const Index outer = Derived::IsRowMajor ? row : col;
|
|
const Index inner = Derived::IsRowMajor ? col : row;
|
|
|
|
Index start = this->outerIndexPtr()[outer];
|
|
Index end = this->isCompressed() ? this->outerIndexPtr()[outer+1] : this->outerIndexPtr()[outer] + this->innerNonZeroPtr()[outer];
|
|
eigen_assert(end>=start && "you are using a non finalized sparse matrix or written coefficient does not exist");
|
|
internal::LowerBoundIndex p;
|
|
p.value = std::lower_bound(this->innerIndexPtr()+start, this->innerIndexPtr()+end,inner) - this->innerIndexPtr();
|
|
p.found = (p.value<end) && (this->innerIndexPtr()[p.value]==inner);
|
|
return p;
|
|
}
|
|
|
|
friend struct internal::evaluator<SparseCompressedBase<Derived> >;
|
|
|
|
private:
|
|
template<typename OtherDerived> explicit SparseCompressedBase(const SparseCompressedBase<OtherDerived>&);
|
|
};
|
|
|
|
template<typename Derived>
|
|
class SparseCompressedBase<Derived>::InnerIterator
|
|
{
|
|
public:
|
|
InnerIterator()
|
|
: m_values(0), m_indices(0), m_outer(0), m_id(0), m_end(0)
|
|
{}
|
|
|
|
InnerIterator(const InnerIterator& other)
|
|
: m_values(other.m_values), m_indices(other.m_indices), m_outer(other.m_outer), m_id(other.m_id), m_end(other.m_end)
|
|
{}
|
|
|
|
InnerIterator& operator=(const InnerIterator& other)
|
|
{
|
|
m_values = other.m_values;
|
|
m_indices = other.m_indices;
|
|
const_cast<OuterType&>(m_outer).setValue(other.m_outer.value());
|
|
m_id = other.m_id;
|
|
m_end = other.m_end;
|
|
return *this;
|
|
}
|
|
|
|
InnerIterator(const SparseCompressedBase& mat, Index outer)
|
|
: m_values(mat.valuePtr()), m_indices(mat.innerIndexPtr()), m_outer(outer)
|
|
{
|
|
if(Derived::IsVectorAtCompileTime && mat.outerIndexPtr()==0)
|
|
{
|
|
m_id = 0;
|
|
m_end = mat.nonZeros();
|
|
}
|
|
else
|
|
{
|
|
m_id = mat.outerIndexPtr()[outer];
|
|
if(mat.isCompressed())
|
|
m_end = mat.outerIndexPtr()[outer+1];
|
|
else
|
|
m_end = m_id + mat.innerNonZeroPtr()[outer];
|
|
}
|
|
}
|
|
|
|
explicit InnerIterator(const SparseCompressedBase& mat)
|
|
: m_values(mat.valuePtr()), m_indices(mat.innerIndexPtr()), m_outer(0), m_id(0), m_end(mat.nonZeros())
|
|
{
|
|
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
|
|
}
|
|
|
|
explicit InnerIterator(const internal::CompressedStorage<Scalar,StorageIndex>& data)
|
|
: m_values(data.valuePtr()), m_indices(data.indexPtr()), m_outer(0), m_id(0), m_end(data.size())
|
|
{
|
|
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
|
|
}
|
|
|
|
inline InnerIterator& operator++() { m_id++; return *this; }
|
|
inline InnerIterator& operator+=(Index i) { m_id += i ; return *this; }
|
|
|
|
inline InnerIterator operator+(Index i)
|
|
{
|
|
InnerIterator result = *this;
|
|
result += i;
|
|
return result;
|
|
}
|
|
|
|
inline const Scalar& value() const { return m_values[m_id]; }
|
|
inline Scalar& valueRef() { return const_cast<Scalar&>(m_values[m_id]); }
|
|
|
|
inline StorageIndex index() const { return m_indices[m_id]; }
|
|
inline Index outer() const { return m_outer.value(); }
|
|
inline Index row() const { return IsRowMajor ? m_outer.value() : index(); }
|
|
inline Index col() const { return IsRowMajor ? index() : m_outer.value(); }
|
|
|
|
inline operator bool() const { return (m_id < m_end); }
|
|
|
|
protected:
|
|
const Scalar* m_values;
|
|
const StorageIndex* m_indices;
|
|
typedef internal::variable_if_dynamic<Index,Derived::IsVectorAtCompileTime?0:Dynamic> OuterType;
|
|
const OuterType m_outer;
|
|
Index m_id;
|
|
Index m_end;
|
|
private:
|
|
// If you get here, then you're not using the right InnerIterator type, e.g.:
|
|
// SparseMatrix<double,RowMajor> A;
|
|
// SparseMatrix<double>::InnerIterator it(A,0);
|
|
template<typename T> InnerIterator(const SparseMatrixBase<T>&, Index outer);
|
|
};
|
|
|
|
template<typename Derived>
|
|
class SparseCompressedBase<Derived>::ReverseInnerIterator
|
|
{
|
|
public:
|
|
ReverseInnerIterator(const SparseCompressedBase& mat, Index outer)
|
|
: m_values(mat.valuePtr()), m_indices(mat.innerIndexPtr()), m_outer(outer)
|
|
{
|
|
if(Derived::IsVectorAtCompileTime && mat.outerIndexPtr()==0)
|
|
{
|
|
m_start = 0;
|
|
m_id = mat.nonZeros();
|
|
}
|
|
else
|
|
{
|
|
m_start = mat.outerIndexPtr()[outer];
|
|
if(mat.isCompressed())
|
|
m_id = mat.outerIndexPtr()[outer+1];
|
|
else
|
|
m_id = m_start + mat.innerNonZeroPtr()[outer];
|
|
}
|
|
}
|
|
|
|
explicit ReverseInnerIterator(const SparseCompressedBase& mat)
|
|
: m_values(mat.valuePtr()), m_indices(mat.innerIndexPtr()), m_outer(0), m_start(0), m_id(mat.nonZeros())
|
|
{
|
|
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
|
|
}
|
|
|
|
explicit ReverseInnerIterator(const internal::CompressedStorage<Scalar,StorageIndex>& data)
|
|
: m_values(data.valuePtr()), m_indices(data.indexPtr()), m_outer(0), m_start(0), m_id(data.size())
|
|
{
|
|
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
|
|
}
|
|
|
|
inline ReverseInnerIterator& operator--() { --m_id; return *this; }
|
|
inline ReverseInnerIterator& operator-=(Index i) { m_id -= i; return *this; }
|
|
|
|
inline ReverseInnerIterator operator-(Index i)
|
|
{
|
|
ReverseInnerIterator result = *this;
|
|
result -= i;
|
|
return result;
|
|
}
|
|
|
|
inline const Scalar& value() const { return m_values[m_id-1]; }
|
|
inline Scalar& valueRef() { return const_cast<Scalar&>(m_values[m_id-1]); }
|
|
|
|
inline StorageIndex index() const { return m_indices[m_id-1]; }
|
|
inline Index outer() const { return m_outer.value(); }
|
|
inline Index row() const { return IsRowMajor ? m_outer.value() : index(); }
|
|
inline Index col() const { return IsRowMajor ? index() : m_outer.value(); }
|
|
|
|
inline operator bool() const { return (m_id > m_start); }
|
|
|
|
protected:
|
|
const Scalar* m_values;
|
|
const StorageIndex* m_indices;
|
|
typedef internal::variable_if_dynamic<Index,Derived::IsVectorAtCompileTime?0:Dynamic> OuterType;
|
|
const OuterType m_outer;
|
|
Index m_start;
|
|
Index m_id;
|
|
};
|
|
|
|
namespace internal {
|
|
|
|
template<typename Derived>
|
|
struct evaluator<SparseCompressedBase<Derived> >
|
|
: evaluator_base<Derived>
|
|
{
|
|
typedef typename Derived::Scalar Scalar;
|
|
typedef typename Derived::InnerIterator InnerIterator;
|
|
|
|
enum {
|
|
CoeffReadCost = NumTraits<Scalar>::ReadCost,
|
|
Flags = Derived::Flags
|
|
};
|
|
|
|
evaluator() : m_matrix(0), m_zero(0)
|
|
{
|
|
EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
|
|
}
|
|
explicit evaluator(const Derived &mat) : m_matrix(&mat), m_zero(0)
|
|
{
|
|
EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
|
|
}
|
|
|
|
inline Index nonZerosEstimate() const {
|
|
return m_matrix->nonZeros();
|
|
}
|
|
|
|
operator Derived&() { return m_matrix->const_cast_derived(); }
|
|
operator const Derived&() const { return *m_matrix; }
|
|
|
|
typedef typename DenseCoeffsBase<Derived,ReadOnlyAccessors>::CoeffReturnType CoeffReturnType;
|
|
const Scalar& coeff(Index row, Index col) const
|
|
{
|
|
Index p = find(row,col);
|
|
|
|
if(p==Dynamic)
|
|
return m_zero;
|
|
else
|
|
return m_matrix->const_cast_derived().valuePtr()[p];
|
|
}
|
|
|
|
Scalar& coeffRef(Index row, Index col)
|
|
{
|
|
Index p = find(row,col);
|
|
eigen_assert(p!=Dynamic && "written coefficient does not exist");
|
|
return m_matrix->const_cast_derived().valuePtr()[p];
|
|
}
|
|
|
|
protected:
|
|
|
|
Index find(Index row, Index col) const
|
|
{
|
|
internal::LowerBoundIndex p = m_matrix->lower_bound(row,col);
|
|
return p.found ? p.value : Dynamic;
|
|
}
|
|
|
|
const Derived *m_matrix;
|
|
const Scalar m_zero;
|
|
};
|
|
|
|
}
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_SPARSE_COMPRESSED_BASE_H
|