mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-04 03:00:39 +08:00
330 lines
16 KiB
C++
330 lines
16 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2007-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_FORWARDDECLARATIONS_H
|
|
#define EIGEN_FORWARDDECLARATIONS_H
|
|
|
|
#include "../InternalHeaderCheck.h"
|
|
|
|
namespace Eigen {
|
|
namespace internal {
|
|
|
|
template<typename T> struct traits;
|
|
|
|
// here we say once and for all that traits<const T> == traits<T>
|
|
// When constness must affect traits, it has to be constness on template parameters on which T itself depends.
|
|
// For example, traits<Map<const T> > != traits<Map<T> >, but
|
|
// traits<const Map<T> > == traits<Map<T> >
|
|
template<typename T> struct traits<const T> : traits<T> {};
|
|
|
|
template<typename Derived> struct has_direct_access
|
|
{
|
|
enum { ret = (traits<Derived>::Flags & DirectAccessBit) ? 1 : 0 };
|
|
};
|
|
|
|
template<typename Derived> struct accessors_level
|
|
{
|
|
enum { has_direct_access = (traits<Derived>::Flags & DirectAccessBit) ? 1 : 0,
|
|
has_write_access = (traits<Derived>::Flags & LvalueBit) ? 1 : 0,
|
|
value = has_direct_access ? (has_write_access ? DirectWriteAccessors : DirectAccessors)
|
|
: (has_write_access ? WriteAccessors : ReadOnlyAccessors)
|
|
};
|
|
};
|
|
|
|
template<typename T> struct evaluator_traits;
|
|
|
|
template< typename T> struct evaluator;
|
|
|
|
} // end namespace internal
|
|
|
|
template<typename T> struct NumTraits;
|
|
|
|
template<typename Derived> struct EigenBase;
|
|
template<typename Derived> class DenseBase;
|
|
template<typename Derived> class PlainObjectBase;
|
|
template<typename Derived, int Level> class DenseCoeffsBase;
|
|
|
|
template<typename Scalar_, int Rows_, int Cols_,
|
|
int Options_ = AutoAlign |
|
|
( (Rows_==1 && Cols_!=1) ? Eigen::RowMajor
|
|
: (Cols_==1 && Rows_!=1) ? Eigen::ColMajor
|
|
: EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION ),
|
|
int MaxRows_ = Rows_,
|
|
int MaxCols_ = Cols_
|
|
> class Matrix;
|
|
|
|
template<typename Derived> class MatrixBase;
|
|
template<typename Derived> class ArrayBase;
|
|
|
|
template<typename ExpressionType, unsigned int Added, unsigned int Removed> class Flagged;
|
|
template<typename ExpressionType, template <typename> class StorageBase > class NoAlias;
|
|
template<typename ExpressionType> class NestByValue;
|
|
template<typename ExpressionType> class ForceAlignedAccess;
|
|
template<typename ExpressionType> class SwapWrapper;
|
|
|
|
template<typename XprType, int BlockRows=Dynamic, int BlockCols=Dynamic, bool InnerPanel = false> class Block;
|
|
template<typename XprType, typename RowIndices, typename ColIndices> class IndexedView;
|
|
template<typename XprType, int Rows=Dynamic, int Cols=Dynamic, int Order=0> class Reshaped;
|
|
|
|
template<typename MatrixType, int Size=Dynamic> class VectorBlock;
|
|
template<typename MatrixType> class Transpose;
|
|
template<typename MatrixType> class Conjugate;
|
|
template<typename NullaryOp, typename MatrixType> class CwiseNullaryOp;
|
|
template<typename UnaryOp, typename MatrixType> class CwiseUnaryOp;
|
|
template<typename BinaryOp, typename Lhs, typename Rhs> class CwiseBinaryOp;
|
|
template<typename TernaryOp, typename Arg1, typename Arg2, typename Arg3> class CwiseTernaryOp;
|
|
template<typename Decomposition, typename Rhstype> class Solve;
|
|
template<typename XprType> class Inverse;
|
|
|
|
template<typename Lhs, typename Rhs, int Option = DefaultProduct> class Product;
|
|
|
|
template<typename Derived> class DiagonalBase;
|
|
template<typename DiagonalVectorType_> class DiagonalWrapper;
|
|
template<typename Scalar_, int SizeAtCompileTime, int MaxSizeAtCompileTime=SizeAtCompileTime> class DiagonalMatrix;
|
|
template<typename MatrixType, typename DiagonalType, int ProductOrder> class DiagonalProduct;
|
|
template<typename MatrixType, int Index = 0> class Diagonal;
|
|
template<typename Derived> class SkewSymmetricBase;
|
|
template<typename VectorType_> class SkewSymmetricWrapper;
|
|
template<typename Scalar_> class SkewSymmetricMatrix3;
|
|
template<int SizeAtCompileTime, int MaxSizeAtCompileTime = SizeAtCompileTime, typename IndexType=int> class PermutationMatrix;
|
|
template<int SizeAtCompileTime, int MaxSizeAtCompileTime = SizeAtCompileTime, typename IndexType=int> class Transpositions;
|
|
template<typename Derived> class PermutationBase;
|
|
template<typename Derived> class TranspositionsBase;
|
|
template<typename IndicesType_> class PermutationWrapper;
|
|
template<typename IndicesType_> class TranspositionsWrapper;
|
|
|
|
template<typename Derived,
|
|
int Level = internal::accessors_level<Derived>::has_write_access ? WriteAccessors : ReadOnlyAccessors
|
|
> class MapBase;
|
|
template<int OuterStrideAtCompileTime, int InnerStrideAtCompileTime> class Stride;
|
|
template<int Value = Dynamic> class InnerStride;
|
|
template<int Value = Dynamic> class OuterStride;
|
|
template<typename MatrixType, int MapOptions=Unaligned, typename StrideType = Stride<0,0> > class Map;
|
|
template<typename Derived> class RefBase;
|
|
template<typename PlainObjectType, int Options = 0,
|
|
typename StrideType = typename std::conditional_t<PlainObjectType::IsVectorAtCompileTime,InnerStride<1>,OuterStride<> > > class Ref;
|
|
template<typename ViewOp, typename MatrixType, typename StrideType = Stride<0,0>> class CwiseUnaryView;
|
|
|
|
template<typename Derived> class TriangularBase;
|
|
template<typename MatrixType, unsigned int Mode> class TriangularView;
|
|
template<typename MatrixType, unsigned int Mode> class SelfAdjointView;
|
|
template<typename MatrixType> class SparseView;
|
|
template<typename ExpressionType> class WithFormat;
|
|
template<typename MatrixType> struct CommaInitializer;
|
|
template<typename Derived> class ReturnByValue;
|
|
template<typename ExpressionType> class ArrayWrapper;
|
|
template<typename ExpressionType> class MatrixWrapper;
|
|
template<typename Derived> class SolverBase;
|
|
template<typename XprType> class InnerIterator;
|
|
|
|
namespace internal {
|
|
template<typename XprType> class generic_randaccess_stl_iterator;
|
|
template<typename XprType> class pointer_based_stl_iterator;
|
|
template<typename XprType, DirectionType Direction> class subvector_stl_iterator;
|
|
template<typename XprType, DirectionType Direction> class subvector_stl_reverse_iterator;
|
|
template<typename DecompositionType> struct kernel_retval_base;
|
|
template<typename DecompositionType> struct kernel_retval;
|
|
template<typename DecompositionType> struct image_retval_base;
|
|
template<typename DecompositionType> struct image_retval;
|
|
} // end namespace internal
|
|
|
|
namespace internal {
|
|
template<typename Scalar_, int Rows=Dynamic, int Cols=Dynamic, int Supers=Dynamic, int Subs=Dynamic, int Options=0> class BandMatrix;
|
|
}
|
|
|
|
namespace internal {
|
|
template<typename Lhs, typename Rhs> struct product_type;
|
|
|
|
template<bool> struct EnableIf;
|
|
|
|
/** \internal
|
|
* \class product_evaluator
|
|
* Products need their own evaluator with more template arguments allowing for
|
|
* easier partial template specializations.
|
|
*/
|
|
template< typename T,
|
|
int ProductTag = internal::product_type<typename T::Lhs,typename T::Rhs>::ret,
|
|
typename LhsShape = typename evaluator_traits<typename T::Lhs>::Shape,
|
|
typename RhsShape = typename evaluator_traits<typename T::Rhs>::Shape,
|
|
typename LhsScalar = typename traits<typename T::Lhs>::Scalar,
|
|
typename RhsScalar = typename traits<typename T::Rhs>::Scalar
|
|
> struct product_evaluator;
|
|
}
|
|
|
|
template<typename Lhs, typename Rhs,
|
|
int ProductType = internal::product_type<Lhs,Rhs>::value>
|
|
struct ProductReturnType;
|
|
|
|
// this is a workaround for sun CC
|
|
template<typename Lhs, typename Rhs> struct LazyProductReturnType;
|
|
|
|
namespace internal {
|
|
|
|
// Provides scalar/packet-wise product and product with accumulation
|
|
// with optional conjugation of the arguments.
|
|
template<typename LhsScalar, typename RhsScalar, bool ConjLhs=false, bool ConjRhs=false> struct conj_helper;
|
|
|
|
template<typename LhsScalar,typename RhsScalar=LhsScalar> struct scalar_sum_op;
|
|
template<typename LhsScalar,typename RhsScalar=LhsScalar> struct scalar_difference_op;
|
|
template<typename LhsScalar,typename RhsScalar=LhsScalar> struct scalar_conj_product_op;
|
|
template<typename LhsScalar,typename RhsScalar=LhsScalar, int NaNPropagation=PropagateFast> struct scalar_min_op;
|
|
template<typename LhsScalar,typename RhsScalar=LhsScalar, int NaNPropagation=PropagateFast> struct scalar_max_op;
|
|
template<typename Scalar> struct scalar_opposite_op;
|
|
template<typename Scalar> struct scalar_conjugate_op;
|
|
template<typename Scalar> struct scalar_real_op;
|
|
template<typename Scalar> struct scalar_imag_op;
|
|
template<typename Scalar> struct scalar_abs_op;
|
|
template<typename Scalar> struct scalar_abs2_op;
|
|
template<typename LhsScalar,typename RhsScalar=LhsScalar> struct scalar_absolute_difference_op;
|
|
template<typename Scalar> struct scalar_sqrt_op;
|
|
template<typename Scalar> struct scalar_rsqrt_op;
|
|
template<typename Scalar> struct scalar_exp_op;
|
|
template<typename Scalar> struct scalar_log_op;
|
|
template<typename Scalar> struct scalar_cos_op;
|
|
template<typename Scalar> struct scalar_sin_op;
|
|
template<typename Scalar> struct scalar_acos_op;
|
|
template<typename Scalar> struct scalar_asin_op;
|
|
template<typename Scalar> struct scalar_tan_op;
|
|
template<typename Scalar> struct scalar_atan_op;
|
|
template <typename LhsScalar, typename RhsScalar = LhsScalar> struct scalar_atan2_op;
|
|
template<typename Scalar> struct scalar_inverse_op;
|
|
template<typename Scalar> struct scalar_square_op;
|
|
template<typename Scalar> struct scalar_cube_op;
|
|
template<typename Scalar, typename NewType> struct scalar_cast_op;
|
|
template<typename Scalar> struct scalar_random_op;
|
|
template<typename Scalar> struct scalar_constant_op;
|
|
template<typename Scalar> struct scalar_identity_op;
|
|
template<typename Scalar> struct scalar_sign_op;
|
|
template <typename Scalar, typename ScalarExponent>
|
|
struct scalar_pow_op;
|
|
template <typename Scalar, typename ScalarExponent, bool BaseIsInteger, bool ExponentIsInteger, bool BaseIsComplex,
|
|
bool ExponentIsComplex>
|
|
struct scalar_unary_pow_op;
|
|
template<typename LhsScalar,typename RhsScalar=LhsScalar> struct scalar_hypot_op;
|
|
template<typename LhsScalar,typename RhsScalar=LhsScalar> struct scalar_product_op;
|
|
template<typename LhsScalar,typename RhsScalar=LhsScalar> struct scalar_quotient_op;
|
|
// logical and bitwise operations
|
|
template <typename Scalar> struct scalar_boolean_and_op;
|
|
template <typename Scalar> struct scalar_boolean_or_op;
|
|
template <typename Scalar> struct scalar_boolean_xor_op;
|
|
template <typename Scalar> struct scalar_boolean_not_op;
|
|
template <typename Scalar> struct scalar_bitwise_and_op;
|
|
template <typename Scalar> struct scalar_bitwise_or_op;
|
|
template <typename Scalar> struct scalar_bitwise_xor_op;
|
|
template <typename Scalar> struct scalar_bitwise_not_op;
|
|
|
|
// SpecialFunctions module
|
|
template<typename Scalar> struct scalar_lgamma_op;
|
|
template<typename Scalar> struct scalar_digamma_op;
|
|
template<typename Scalar> struct scalar_erf_op;
|
|
template<typename Scalar> struct scalar_erfc_op;
|
|
template<typename Scalar> struct scalar_ndtri_op;
|
|
template<typename Scalar> struct scalar_igamma_op;
|
|
template<typename Scalar> struct scalar_igammac_op;
|
|
template<typename Scalar> struct scalar_zeta_op;
|
|
template<typename Scalar> struct scalar_betainc_op;
|
|
|
|
// Bessel functions in SpecialFunctions module
|
|
template<typename Scalar> struct scalar_bessel_i0_op;
|
|
template<typename Scalar> struct scalar_bessel_i0e_op;
|
|
template<typename Scalar> struct scalar_bessel_i1_op;
|
|
template<typename Scalar> struct scalar_bessel_i1e_op;
|
|
template<typename Scalar> struct scalar_bessel_j0_op;
|
|
template<typename Scalar> struct scalar_bessel_y0_op;
|
|
template<typename Scalar> struct scalar_bessel_j1_op;
|
|
template<typename Scalar> struct scalar_bessel_y1_op;
|
|
template<typename Scalar> struct scalar_bessel_k0_op;
|
|
template<typename Scalar> struct scalar_bessel_k0e_op;
|
|
template<typename Scalar> struct scalar_bessel_k1_op;
|
|
template<typename Scalar> struct scalar_bessel_k1e_op;
|
|
|
|
|
|
} // end namespace internal
|
|
|
|
struct IOFormat;
|
|
|
|
// Array module
|
|
template<typename Scalar_, int Rows_, int Cols_,
|
|
int Options_ = AutoAlign |
|
|
( (Rows_==1 && Cols_!=1) ? Eigen::RowMajor
|
|
: (Cols_==1 && Rows_!=1) ? Eigen::ColMajor
|
|
: EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION ),
|
|
int MaxRows_ = Rows_, int MaxCols_ = Cols_> class Array;
|
|
template<typename ConditionMatrixType, typename ThenMatrixType, typename ElseMatrixType> class Select;
|
|
template<typename MatrixType, typename BinaryOp, int Direction> class PartialReduxExpr;
|
|
template<typename ExpressionType, int Direction> class VectorwiseOp;
|
|
template<typename MatrixType,int RowFactor,int ColFactor> class Replicate;
|
|
template<typename MatrixType, int Direction = BothDirections> class Reverse;
|
|
|
|
#if defined(EIGEN_USE_LAPACKE) && defined(lapack_int)
|
|
// Lapacke interface requires StorageIndex to be lapack_int
|
|
typedef lapack_int DefaultPermutationIndex;
|
|
#else
|
|
typedef int DefaultPermutationIndex;
|
|
#endif
|
|
|
|
template<typename MatrixType, typename PermutationIndex = DefaultPermutationIndex> class FullPivLU;
|
|
template<typename MatrixType, typename PermutationIndex = DefaultPermutationIndex> class PartialPivLU;
|
|
namespace internal {
|
|
template<typename MatrixType> struct inverse_impl;
|
|
}
|
|
template<typename MatrixType> class HouseholderQR;
|
|
template<typename MatrixType, typename PermutationIndex = DefaultPermutationIndex> class ColPivHouseholderQR;
|
|
template<typename MatrixType, typename PermutationIndex = DefaultPermutationIndex> class FullPivHouseholderQR;
|
|
template<typename MatrixType, typename PermutationIndex = DefaultPermutationIndex> class CompleteOrthogonalDecomposition;
|
|
template<typename MatrixType> class SVDBase;
|
|
template<typename MatrixType, int Options = 0> class JacobiSVD;
|
|
template<typename MatrixType, int Options = 0> class BDCSVD;
|
|
template<typename MatrixType, int UpLo = Lower> class LLT;
|
|
template<typename MatrixType, int UpLo = Lower> class LDLT;
|
|
template<typename VectorsType, typename CoeffsType, int Side=OnTheLeft> class HouseholderSequence;
|
|
template<typename Scalar> class JacobiRotation;
|
|
|
|
// Geometry module:
|
|
namespace internal {
|
|
template<typename Derived, typename OtherDerived, int Size = MatrixBase<Derived>::SizeAtCompileTime> struct cross_impl;
|
|
}
|
|
template<typename Derived, int Dim_> class RotationBase;
|
|
template<typename Derived> class QuaternionBase;
|
|
template<typename Scalar> class Rotation2D;
|
|
template<typename Scalar> class AngleAxis;
|
|
template<typename Scalar,int Dim> class Translation;
|
|
template<typename Scalar,int Dim> class AlignedBox;
|
|
template<typename Scalar, int Options = AutoAlign> class Quaternion;
|
|
template<typename Scalar,int Dim,int Mode,int Options_=AutoAlign> class Transform;
|
|
template <typename Scalar_, int AmbientDim_, int Options=AutoAlign> class ParametrizedLine;
|
|
template <typename Scalar_, int AmbientDim_, int Options=AutoAlign> class Hyperplane;
|
|
template<typename Scalar> class UniformScaling;
|
|
template<typename MatrixType,int Direction> class Homogeneous;
|
|
|
|
// Sparse module:
|
|
template<typename Derived> class SparseMatrixBase;
|
|
|
|
// MatrixFunctions module
|
|
template<typename Derived> struct MatrixExponentialReturnValue;
|
|
template<typename Derived> class MatrixFunctionReturnValue;
|
|
template<typename Derived> class MatrixSquareRootReturnValue;
|
|
template<typename Derived> class MatrixLogarithmReturnValue;
|
|
template<typename Derived> class MatrixPowerReturnValue;
|
|
template<typename Derived> class MatrixComplexPowerReturnValue;
|
|
|
|
namespace internal {
|
|
template <typename Scalar>
|
|
struct stem_function
|
|
{
|
|
typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
|
|
typedef ComplexScalar type(ComplexScalar, int);
|
|
};
|
|
}
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_FORWARDDECLARATIONS_H
|