mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-16 22:59:39 +08:00
138 lines
4.9 KiB
C++
138 lines
4.9 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include "main.h"
|
|
#include <Eigen/QR>
|
|
#include "solverbase.h"
|
|
|
|
template <typename MatrixType>
|
|
void qr(const MatrixType& m) {
|
|
Index rows = m.rows();
|
|
Index cols = m.cols();
|
|
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> MatrixQType;
|
|
|
|
MatrixType a = MatrixType::Random(rows, cols);
|
|
HouseholderQR<MatrixType> qrOfA(a);
|
|
|
|
MatrixQType q = qrOfA.householderQ();
|
|
VERIFY_IS_UNITARY(q);
|
|
|
|
MatrixType r = qrOfA.matrixQR().template triangularView<Upper>();
|
|
VERIFY_IS_APPROX(a, qrOfA.householderQ() * r);
|
|
}
|
|
|
|
template <typename MatrixType, int Cols2>
|
|
void qr_fixedsize() {
|
|
enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime };
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
Matrix<Scalar, Rows, Cols> m1 = Matrix<Scalar, Rows, Cols>::Random();
|
|
HouseholderQR<Matrix<Scalar, Rows, Cols> > qr(m1);
|
|
|
|
Matrix<Scalar, Rows, Cols> r = qr.matrixQR();
|
|
// FIXME need better way to construct trapezoid
|
|
for (int i = 0; i < Rows; i++)
|
|
for (int j = 0; j < Cols; j++)
|
|
if (i > j) r(i, j) = Scalar(0);
|
|
|
|
VERIFY_IS_APPROX(m1, qr.householderQ() * r);
|
|
|
|
check_solverbase<Matrix<Scalar, Cols, Cols2>, Matrix<Scalar, Rows, Cols2> >(m1, qr, Rows, Cols, Cols2);
|
|
}
|
|
|
|
template <typename MatrixType>
|
|
void qr_invertible() {
|
|
using std::abs;
|
|
using std::log;
|
|
using std::max;
|
|
using std::pow;
|
|
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
|
|
STATIC_CHECK((internal::is_same<typename HouseholderQR<MatrixType>::StorageIndex, int>::value));
|
|
|
|
int size = internal::random<int>(10, 50);
|
|
|
|
MatrixType m1(size, size), m2(size, size), m3(size, size);
|
|
m1 = MatrixType::Random(size, size);
|
|
|
|
if (internal::is_same<RealScalar, float>::value) {
|
|
// let's build a matrix more stable to inverse
|
|
MatrixType a = MatrixType::Random(size, size * 4);
|
|
m1 += a * a.adjoint();
|
|
}
|
|
|
|
HouseholderQR<MatrixType> qr(m1);
|
|
|
|
check_solverbase<MatrixType, MatrixType>(m1, qr, size, size, size);
|
|
|
|
// now construct a matrix with prescribed determinant
|
|
m1.setZero();
|
|
for (int i = 0; i < size; i++) m1(i, i) = internal::random<Scalar>();
|
|
Scalar det = m1.diagonal().prod();
|
|
RealScalar absdet = abs(det);
|
|
m3 = qr.householderQ(); // get a unitary
|
|
m1 = m3 * m1 * m3.adjoint();
|
|
qr.compute(m1);
|
|
VERIFY_IS_APPROX(log(absdet), qr.logAbsDeterminant());
|
|
VERIFY_IS_APPROX(numext::sign(det), qr.signDeterminant());
|
|
// This test is tricky if the determinant becomes too small.
|
|
// Since we generate random numbers with magnitude range [0,1], the average determinant is 0.5^size
|
|
RealScalar tol =
|
|
numext::maxi(RealScalar(pow(0.5, size)), numext::maxi<RealScalar>(abs(absdet), abs(qr.absDeterminant())));
|
|
VERIFY_IS_MUCH_SMALLER_THAN(abs(det - qr.determinant()), tol);
|
|
VERIFY_IS_MUCH_SMALLER_THAN(abs(absdet - qr.absDeterminant()), tol);
|
|
}
|
|
|
|
template <typename MatrixType>
|
|
void qr_verify_assert() {
|
|
MatrixType tmp;
|
|
|
|
HouseholderQR<MatrixType> qr;
|
|
VERIFY_RAISES_ASSERT(qr.matrixQR())
|
|
VERIFY_RAISES_ASSERT(qr.solve(tmp))
|
|
VERIFY_RAISES_ASSERT(qr.transpose().solve(tmp))
|
|
VERIFY_RAISES_ASSERT(qr.adjoint().solve(tmp))
|
|
VERIFY_RAISES_ASSERT(qr.householderQ())
|
|
VERIFY_RAISES_ASSERT(qr.determinant())
|
|
VERIFY_RAISES_ASSERT(qr.absDeterminant())
|
|
VERIFY_RAISES_ASSERT(qr.signDeterminant())
|
|
}
|
|
|
|
EIGEN_DECLARE_TEST(qr) {
|
|
for (int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_1(
|
|
qr(MatrixXf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
|
|
CALL_SUBTEST_2(qr(MatrixXcd(internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2),
|
|
internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2))));
|
|
CALL_SUBTEST_3((qr_fixedsize<Matrix<float, 3, 4>, 2>()));
|
|
CALL_SUBTEST_4((qr_fixedsize<Matrix<double, 6, 2>, 4>()));
|
|
CALL_SUBTEST_5((qr_fixedsize<Matrix<double, 2, 5>, 7>()));
|
|
CALL_SUBTEST_11(qr(Matrix<float, 1, 1>()));
|
|
}
|
|
|
|
for (int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_1(qr_invertible<MatrixXf>());
|
|
CALL_SUBTEST_6(qr_invertible<MatrixXd>());
|
|
CALL_SUBTEST_7(qr_invertible<MatrixXcf>());
|
|
CALL_SUBTEST_8(qr_invertible<MatrixXcd>());
|
|
}
|
|
|
|
CALL_SUBTEST_9(qr_verify_assert<Matrix3f>());
|
|
CALL_SUBTEST_10(qr_verify_assert<Matrix3d>());
|
|
CALL_SUBTEST_1(qr_verify_assert<MatrixXf>());
|
|
CALL_SUBTEST_6(qr_verify_assert<MatrixXd>());
|
|
CALL_SUBTEST_7(qr_verify_assert<MatrixXcf>());
|
|
CALL_SUBTEST_8(qr_verify_assert<MatrixXcd>());
|
|
|
|
// Test problem size constructors
|
|
CALL_SUBTEST_12(HouseholderQR<MatrixXf>(10, 20));
|
|
}
|