eigen/test/rvalue_types.cpp
Antonio Sanchez 543e34ab9d Re-implement move assignments.
The original swap approach leads to potential undefined behavior (reading
uninitialized memory) and results in unnecessary copying of data for static
storage.

Here we pass down the move assignment to the underlying storage.  Static
storage does a one-way copy, dynamic storage does a swap.

Modified the tests to no longer read from the moved-from matrix/tensor,
since that can lead to UB. Added a test to ensure we do not access
uninitialized memory in a move.

Fixes: #2119
2021-03-10 16:55:20 +00:00

187 lines
6.1 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2013 Hauke Heibel <hauke.heibel@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#define EIGEN_RUNTIME_NO_MALLOC
#include "main.h"
#if EIGEN_HAS_CXX11
#include "MovableScalar.h"
#endif
#include <Eigen/Core>
using internal::UIntPtr;
// A Scalar that asserts for uninitialized access.
template<typename T>
class SafeScalar {
public:
SafeScalar() : initialized_(false) {}
SafeScalar(const SafeScalar& other) {
*this = other;
}
SafeScalar& operator=(const SafeScalar& other) {
val_ = T(other);
initialized_ = true;
return *this;
}
SafeScalar(T val) : val_(val), initialized_(true) {}
SafeScalar& operator=(T val) {
val_ = val;
initialized_ = true;
}
operator T() const {
VERIFY(initialized_ && "Uninitialized access.");
return val_;
}
private:
T val_;
bool initialized_;
};
#if EIGEN_HAS_RVALUE_REFERENCES
template <typename MatrixType>
void rvalue_copyassign(const MatrixType& m)
{
typedef typename internal::traits<MatrixType>::Scalar Scalar;
// create a temporary which we are about to destroy by moving
MatrixType tmp = m;
UIntPtr src_address = reinterpret_cast<UIntPtr>(tmp.data());
Eigen::internal::set_is_malloc_allowed(false); // moving from an rvalue reference shall never allocate
// move the temporary to n
MatrixType n = std::move(tmp);
UIntPtr dst_address = reinterpret_cast<UIntPtr>(n.data());
if (MatrixType::RowsAtCompileTime==Dynamic|| MatrixType::ColsAtCompileTime==Dynamic)
{
// verify that we actually moved the guts
VERIFY_IS_EQUAL(src_address, dst_address);
VERIFY_IS_EQUAL(tmp.size(), 0);
VERIFY_IS_EQUAL(reinterpret_cast<UIntPtr>(tmp.data()), UIntPtr(0));
}
// verify that the content did not change
Scalar abs_diff = (m-n).array().abs().sum();
VERIFY_IS_EQUAL(abs_diff, Scalar(0));
Eigen::internal::set_is_malloc_allowed(true);
}
template<typename TranspositionsType>
void rvalue_transpositions(Index rows)
{
typedef typename TranspositionsType::IndicesType PermutationVectorType;
PermutationVectorType vec;
randomPermutationVector(vec, rows);
TranspositionsType t0(vec);
Eigen::internal::set_is_malloc_allowed(false); // moving from an rvalue reference shall never allocate
UIntPtr t0_address = reinterpret_cast<UIntPtr>(t0.indices().data());
// Move constructors:
TranspositionsType t1 = std::move(t0);
UIntPtr t1_address = reinterpret_cast<UIntPtr>(t1.indices().data());
VERIFY_IS_EQUAL(t0_address, t1_address);
// t0 must be de-allocated:
VERIFY_IS_EQUAL(t0.size(), 0);
VERIFY_IS_EQUAL(reinterpret_cast<UIntPtr>(t0.indices().data()), UIntPtr(0));
// Move assignment:
t0 = std::move(t1);
t0_address = reinterpret_cast<UIntPtr>(t0.indices().data());
VERIFY_IS_EQUAL(t0_address, t1_address);
// t1 must be de-allocated:
VERIFY_IS_EQUAL(t1.size(), 0);
VERIFY_IS_EQUAL(reinterpret_cast<UIntPtr>(t1.indices().data()), UIntPtr(0));
Eigen::internal::set_is_malloc_allowed(true);
}
template <typename MatrixType>
void rvalue_move(const MatrixType& m)
{
// lvalue reference is copied
MatrixType b(m);
VERIFY_IS_EQUAL(b, m);
// lvalue reference is copied
MatrixType c{m};
VERIFY_IS_EQUAL(c, m);
// lvalue reference is copied
MatrixType d = m;
VERIFY_IS_EQUAL(d, m);
// rvalue reference is moved - copy constructor.
MatrixType e_src(m);
VERIFY_IS_EQUAL(e_src, m);
MatrixType e_dst(std::move(e_src));
VERIFY_IS_EQUAL(e_dst, m);
// rvalue reference is moved - copy constructor.
MatrixType f_src(m);
VERIFY_IS_EQUAL(f_src, m);
MatrixType f_dst = std::move(f_src);
VERIFY_IS_EQUAL(f_dst, m);
// rvalue reference is moved - copy assignment.
MatrixType g_src(m);
VERIFY_IS_EQUAL(g_src, m);
MatrixType g_dst;
g_dst = std::move(g_src);
VERIFY_IS_EQUAL(g_dst, m);
}
#else
template <typename MatrixType>
void rvalue_copyassign(const MatrixType&) {}
template<typename TranspositionsType>
void rvalue_transpositions(Index) {}
template <typename MatrixType>
void rvalue_move(const MatrixType&) {}
#endif
EIGEN_DECLARE_TEST(rvalue_types)
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1(rvalue_copyassign( MatrixXf::Random(50,50).eval() ));
CALL_SUBTEST_1(rvalue_copyassign( ArrayXXf::Random(50,50).eval() ));
CALL_SUBTEST_1(rvalue_copyassign( Matrix<float,1,Dynamic>::Random(50).eval() ));
CALL_SUBTEST_1(rvalue_copyassign( Array<float,1,Dynamic>::Random(50).eval() ));
CALL_SUBTEST_1(rvalue_copyassign( Matrix<float,Dynamic,1>::Random(50).eval() ));
CALL_SUBTEST_1(rvalue_copyassign( Array<float,Dynamic,1>::Random(50).eval() ));
CALL_SUBTEST_2(rvalue_copyassign( Array<float,2,1>::Random().eval() ));
CALL_SUBTEST_2(rvalue_copyassign( Array<float,3,1>::Random().eval() ));
CALL_SUBTEST_2(rvalue_copyassign( Array<float,4,1>::Random().eval() ));
CALL_SUBTEST_2(rvalue_copyassign( Array<float,2,2>::Random().eval() ));
CALL_SUBTEST_2(rvalue_copyassign( Array<float,3,3>::Random().eval() ));
CALL_SUBTEST_2(rvalue_copyassign( Array<float,4,4>::Random().eval() ));
CALL_SUBTEST_3((rvalue_transpositions<PermutationMatrix<Dynamic, Dynamic, int> >(internal::random<int>(1,EIGEN_TEST_MAX_SIZE))));
CALL_SUBTEST_3((rvalue_transpositions<PermutationMatrix<Dynamic, Dynamic, Index> >(internal::random<int>(1,EIGEN_TEST_MAX_SIZE))));
CALL_SUBTEST_4((rvalue_transpositions<Transpositions<Dynamic, Dynamic, int> >(internal::random<int>(1,EIGEN_TEST_MAX_SIZE))));
CALL_SUBTEST_4((rvalue_transpositions<Transpositions<Dynamic, Dynamic, Index> >(internal::random<int>(1,EIGEN_TEST_MAX_SIZE))));
#if EIGEN_HAS_CXX11
CALL_SUBTEST_5(rvalue_move(Eigen::Matrix<MovableScalar<float>,1,3>::Random().eval()));
CALL_SUBTEST_5(rvalue_move(Eigen::Matrix<SafeScalar<float>,1,3>::Random().eval()));
CALL_SUBTEST_5(rvalue_move(Eigen::Matrix<SafeScalar<float>,Eigen::Dynamic,Eigen::Dynamic>::Random(1,3).eval()));
#endif
}
}