Benoit Jacob c1e2156d8a * Much better, consistent error msgs when mixing different scalar types:
- in matrix-matrix product, static assert on the two scalar types to be the same.
- Similarly in CwiseBinaryOp. POTENTIALLY CONTROVERSIAL: we don't allow anymore binary
  ops to take two different scalar types. The functors that we defined take two args
  of the same type anyway; also we still allow the return type to be different.
  Again the reason is that different scalar types are incompatible with vectorization.
  Better have the user realize explicitly what mixing different numeric types costs him
  in terms of performance.
  See comment in CwiseBinaryOp constructor.
- This allowed to fix a little mistake in test/regression.cpp, mixing float and double
- Remove redundant semicolon (;) after static asserts
2008-12-03 21:01:55 +00:00

384 lines
13 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_DOT_H
#define EIGEN_DOT_H
/***************************************************************************
* Part 1 : the logic deciding a strategy for vectorization and unrolling
***************************************************************************/
template<typename Derived1, typename Derived2>
struct ei_dot_traits
{
public:
enum {
Vectorization = (int(Derived1::Flags)&int(Derived2::Flags)&ActualPacketAccessBit)
&& (int(Derived1::Flags)&int(Derived2::Flags)&LinearAccessBit)
? LinearVectorization
: NoVectorization
};
private:
typedef typename Derived1::Scalar Scalar;
enum {
PacketSize = ei_packet_traits<Scalar>::size,
Cost = Derived1::SizeAtCompileTime * (Derived1::CoeffReadCost + Derived2::CoeffReadCost + NumTraits<Scalar>::MulCost)
+ (Derived1::SizeAtCompileTime-1) * NumTraits<Scalar>::AddCost,
UnrollingLimit = EIGEN_UNROLLING_LIMIT * (int(Vectorization) == int(NoVectorization) ? 1 : int(PacketSize))
};
public:
enum {
Unrolling = Cost <= UnrollingLimit
? CompleteUnrolling
: NoUnrolling
};
};
/***************************************************************************
* Part 2 : unrollers
***************************************************************************/
/*** no vectorization ***/
template<typename Derived1, typename Derived2, int Start, int Length>
struct ei_dot_novec_unroller
{
enum {
HalfLength = Length/2
};
typedef typename Derived1::Scalar Scalar;
inline static Scalar run(const Derived1& v1, const Derived2& v2)
{
return ei_dot_novec_unroller<Derived1, Derived2, Start, HalfLength>::run(v1, v2)
+ ei_dot_novec_unroller<Derived1, Derived2, Start+HalfLength, Length-HalfLength>::run(v1, v2);
}
};
template<typename Derived1, typename Derived2, int Start>
struct ei_dot_novec_unroller<Derived1, Derived2, Start, 1>
{
typedef typename Derived1::Scalar Scalar;
inline static Scalar run(const Derived1& v1, const Derived2& v2)
{
return v1.coeff(Start) * ei_conj(v2.coeff(Start));
}
};
/*** vectorization ***/
template<typename Derived1, typename Derived2, int Index, int Stop,
bool LastPacket = (Stop-Index == ei_packet_traits<typename Derived1::Scalar>::size)>
struct ei_dot_vec_unroller
{
typedef typename Derived1::Scalar Scalar;
typedef typename ei_packet_traits<Scalar>::type PacketScalar;
enum {
row1 = Derived1::RowsAtCompileTime == 1 ? 0 : Index,
col1 = Derived1::RowsAtCompileTime == 1 ? Index : 0,
row2 = Derived2::RowsAtCompileTime == 1 ? 0 : Index,
col2 = Derived2::RowsAtCompileTime == 1 ? Index : 0
};
inline static PacketScalar run(const Derived1& v1, const Derived2& v2)
{
return ei_pmadd(
v1.template packet<Aligned>(row1, col1),
v2.template packet<Aligned>(row2, col2),
ei_dot_vec_unroller<Derived1, Derived2, Index+ei_packet_traits<Scalar>::size, Stop>::run(v1, v2)
);
}
};
template<typename Derived1, typename Derived2, int Index, int Stop>
struct ei_dot_vec_unroller<Derived1, Derived2, Index, Stop, true>
{
enum {
row1 = Derived1::RowsAtCompileTime == 1 ? 0 : Index,
col1 = Derived1::RowsAtCompileTime == 1 ? Index : 0,
row2 = Derived2::RowsAtCompileTime == 1 ? 0 : Index,
col2 = Derived2::RowsAtCompileTime == 1 ? Index : 0,
alignment1 = (Derived1::Flags & AlignedBit) ? Aligned : Unaligned,
alignment2 = (Derived2::Flags & AlignedBit) ? Aligned : Unaligned
};
typedef typename Derived1::Scalar Scalar;
typedef typename ei_packet_traits<Scalar>::type PacketScalar;
inline static PacketScalar run(const Derived1& v1, const Derived2& v2)
{
return ei_pmul(v1.template packet<alignment1>(row1, col1), v2.template packet<alignment2>(row2, col2));
}
};
/***************************************************************************
* Part 3 : implementation of all cases
***************************************************************************/
template<typename Derived1, typename Derived2,
int Vectorization = ei_dot_traits<Derived1, Derived2>::Vectorization,
int Unrolling = ei_dot_traits<Derived1, Derived2>::Unrolling
>
struct ei_dot_impl;
template<typename Derived1, typename Derived2>
struct ei_dot_impl<Derived1, Derived2, NoVectorization, NoUnrolling>
{
typedef typename Derived1::Scalar Scalar;
static Scalar run(const Derived1& v1, const Derived2& v2)
{
ei_assert(v1.size()>0 && "you are using a non initialized vector");
Scalar res;
res = v1.coeff(0) * ei_conj(v2.coeff(0));
for(int i = 1; i < v1.size(); i++)
res += v1.coeff(i) * ei_conj(v2.coeff(i));
return res;
}
};
template<typename Derived1, typename Derived2>
struct ei_dot_impl<Derived1, Derived2, NoVectorization, CompleteUnrolling>
: public ei_dot_novec_unroller<Derived1, Derived2, 0, Derived1::SizeAtCompileTime>
{};
template<typename Derived1, typename Derived2>
struct ei_dot_impl<Derived1, Derived2, LinearVectorization, NoUnrolling>
{
typedef typename Derived1::Scalar Scalar;
typedef typename ei_packet_traits<Scalar>::type PacketScalar;
static Scalar run(const Derived1& v1, const Derived2& v2)
{
const int size = v1.size();
const int packetSize = ei_packet_traits<Scalar>::size;
const int alignedSize = (size/packetSize)*packetSize;
enum {
alignment1 = (Derived1::Flags & AlignedBit) ? Aligned : Unaligned,
alignment2 = (Derived2::Flags & AlignedBit) ? Aligned : Unaligned
};
Scalar res;
// do the vectorizable part of the sum
if(size >= packetSize)
{
PacketScalar packet_res = ei_pmul(
v1.template packet<alignment1>(0),
v2.template packet<alignment2>(0)
);
for(int index = packetSize; index<alignedSize; index += packetSize)
{
packet_res = ei_pmadd(
v1.template packet<alignment1>(index),
v2.template packet<alignment2>(index),
packet_res
);
}
res = ei_predux(packet_res);
// now we must do the rest without vectorization.
if(alignedSize == size) return res;
}
else // too small to vectorize anything.
// since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize.
{
res = Scalar(0);
}
// do the remainder of the vector
for(int index = alignedSize; index < size; index++)
{
res += v1.coeff(index) * v2.coeff(index);
}
return res;
}
};
template<typename Derived1, typename Derived2>
struct ei_dot_impl<Derived1, Derived2, LinearVectorization, CompleteUnrolling>
{
typedef typename Derived1::Scalar Scalar;
typedef typename ei_packet_traits<Scalar>::type PacketScalar;
enum {
PacketSize = ei_packet_traits<Scalar>::size,
Size = Derived1::SizeAtCompileTime,
VectorizationSize = (Size / PacketSize) * PacketSize
};
static Scalar run(const Derived1& v1, const Derived2& v2)
{
Scalar res = ei_predux(ei_dot_vec_unroller<Derived1, Derived2, 0, VectorizationSize>::run(v1, v2));
if (VectorizationSize != Size)
res += ei_dot_novec_unroller<Derived1, Derived2, VectorizationSize, Size-VectorizationSize>::run(v1, v2);
return res;
}
};
/***************************************************************************
* Part 4 : implementation of MatrixBase methods
***************************************************************************/
/** \returns the dot product of *this with other.
*
* \only_for_vectors
*
* \note If the scalar type is complex numbers, then this function returns the hermitian
* (sesquilinear) dot product, linear in the first variable and conjugate-linear in the
* second variable.
*
* \sa squaredNorm(), norm()
*/
template<typename Derived>
template<typename OtherDerived>
typename ei_traits<Derived>::Scalar
MatrixBase<Derived>::dot(const MatrixBase<OtherDerived>& other) const
{
typedef typename Derived::Nested Nested;
typedef typename OtherDerived::Nested OtherNested;
typedef typename ei_unref<Nested>::type _Nested;
typedef typename ei_unref<OtherNested>::type _OtherNested;
EIGEN_STATIC_ASSERT_VECTOR_ONLY(_Nested)
EIGEN_STATIC_ASSERT_VECTOR_ONLY(_OtherNested)
EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(_Nested,_OtherNested)
ei_assert(size() == other.size());
return ei_dot_impl<_Nested, _OtherNested>::run(derived(), other.derived());
}
/** \returns the squared norm of *this, i.e. the dot product of *this with itself.
*
* \note This is \em not the \em l2 norm, but its square.
*
* \deprecated Use squaredNorm() instead. This norm2() function is kept only for compatibility and will be removed in Eigen 2.0.
*
* \only_for_vectors
*
* \sa dot(), norm()
*/
template<typename Derived>
EIGEN_DEPRECATED inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real MatrixBase<Derived>::norm2() const
{
return ei_real(dot(*this));
}
/** \returns the squared norm of *this, i.e. the dot product of *this with itself.
*
* \only_for_vectors
*
* \sa dot(), norm()
*/
template<typename Derived>
inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real MatrixBase<Derived>::squaredNorm() const
{
return ei_real(dot(*this));
}
/** \returns the \em l2 norm of *this, i.e. the square root of the dot product of *this with itself.
*
* \only_for_vectors
*
* \sa dot(), normSquared()
*/
template<typename Derived>
inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real MatrixBase<Derived>::norm() const
{
return ei_sqrt(squaredNorm());
}
/** \returns an expression of the quotient of *this by its own norm.
*
* \only_for_vectors
*
* \sa norm(), normalize()
*/
template<typename Derived>
inline const typename MatrixBase<Derived>::EvalType
MatrixBase<Derived>::normalized() const
{
typedef typename ei_nested<Derived>::type Nested;
typedef typename ei_unref<Nested>::type _Nested;
_Nested n(derived());
return n / n.norm();
}
/** Normalizes the vector, i.e. divides it by its own norm.
*
* \only_for_vectors
*
* \sa norm(), normalized()
*/
template<typename Derived>
inline void MatrixBase<Derived>::normalize()
{
*this /= norm();
}
/** \returns true if *this is approximately orthogonal to \a other,
* within the precision given by \a prec.
*
* Example: \include MatrixBase_isOrthogonal.cpp
* Output: \verbinclude MatrixBase_isOrthogonal.out
*/
template<typename Derived>
template<typename OtherDerived>
bool MatrixBase<Derived>::isOrthogonal
(const MatrixBase<OtherDerived>& other, RealScalar prec) const
{
typename ei_nested<Derived,2>::type nested(derived());
typename ei_nested<OtherDerived,2>::type otherNested(other.derived());
return ei_abs2(nested.dot(otherNested)) <= prec * prec * nested.squaredNorm() * otherNested.squaredNorm();
}
/** \returns true if *this is approximately an unitary matrix,
* within the precision given by \a prec. In the case where the \a Scalar
* type is real numbers, a unitary matrix is an orthogonal matrix, whence the name.
*
* \note This can be used to check whether a family of vectors forms an orthonormal basis.
* Indeed, \c m.isUnitary() returns true if and only if the columns (equivalently, the rows) of m form an
* orthonormal basis.
*
* Example: \include MatrixBase_isUnitary.cpp
* Output: \verbinclude MatrixBase_isUnitary.out
*/
template<typename Derived>
bool MatrixBase<Derived>::isUnitary(RealScalar prec) const
{
typename Derived::Nested nested(derived());
for(int i = 0; i < cols(); i++)
{
if(!ei_isApprox(nested.col(i).squaredNorm(), static_cast<Scalar>(1), prec))
return false;
for(int j = 0; j < i; j++)
if(!ei_isMuchSmallerThan(nested.col(i).dot(nested.col(j)), static_cast<Scalar>(1), prec))
return false;
}
return true;
}
#endif // EIGEN_DOT_H