eigen/Eigen/src/Core/CoreEvaluators.h
Gael Guennebaud 9d6d0dff8f bug #1317: fix performance regression with some Block expressions and clang by helping it to remove dead code.
The trick is to get rid of the nested expression in the evaluator by copying only the required information (here, the strides).
2016-10-01 15:37:00 +02:00

1674 lines
60 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2011 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2011-2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_COREEVALUATORS_H
#define EIGEN_COREEVALUATORS_H
namespace Eigen {
namespace internal {
// This class returns the evaluator kind from the expression storage kind.
// Default assumes index based accessors
template<typename StorageKind>
struct storage_kind_to_evaluator_kind {
typedef IndexBased Kind;
};
// This class returns the evaluator shape from the expression storage kind.
// It can be Dense, Sparse, Triangular, Diagonal, SelfAdjoint, Band, etc.
template<typename StorageKind> struct storage_kind_to_shape;
template<> struct storage_kind_to_shape<Dense> { typedef DenseShape Shape; };
template<> struct storage_kind_to_shape<SolverStorage> { typedef SolverShape Shape; };
template<> struct storage_kind_to_shape<PermutationStorage> { typedef PermutationShape Shape; };
template<> struct storage_kind_to_shape<TranspositionsStorage> { typedef TranspositionsShape Shape; };
// Evaluators have to be specialized with respect to various criteria such as:
// - storage/structure/shape
// - scalar type
// - etc.
// Therefore, we need specialization of evaluator providing additional template arguments for each kind of evaluators.
// We currently distinguish the following kind of evaluators:
// - unary_evaluator for expressions taking only one arguments (CwiseUnaryOp, CwiseUnaryView, Transpose, MatrixWrapper, ArrayWrapper, Reverse, Replicate)
// - binary_evaluator for expression taking two arguments (CwiseBinaryOp)
// - ternary_evaluator for expression taking three arguments (CwiseTernaryOp)
// - product_evaluator for linear algebra products (Product); special case of binary_evaluator because it requires additional tags for dispatching.
// - mapbase_evaluator for Map, Block, Ref
// - block_evaluator for Block (special dispatching to a mapbase_evaluator or unary_evaluator)
template< typename T,
typename Arg1Kind = typename evaluator_traits<typename T::Arg1>::Kind,
typename Arg2Kind = typename evaluator_traits<typename T::Arg2>::Kind,
typename Arg3Kind = typename evaluator_traits<typename T::Arg3>::Kind,
typename Arg1Scalar = typename traits<typename T::Arg1>::Scalar,
typename Arg2Scalar = typename traits<typename T::Arg2>::Scalar,
typename Arg3Scalar = typename traits<typename T::Arg3>::Scalar> struct ternary_evaluator;
template< typename T,
typename LhsKind = typename evaluator_traits<typename T::Lhs>::Kind,
typename RhsKind = typename evaluator_traits<typename T::Rhs>::Kind,
typename LhsScalar = typename traits<typename T::Lhs>::Scalar,
typename RhsScalar = typename traits<typename T::Rhs>::Scalar> struct binary_evaluator;
template< typename T,
typename Kind = typename evaluator_traits<typename T::NestedExpression>::Kind,
typename Scalar = typename T::Scalar> struct unary_evaluator;
// evaluator_traits<T> contains traits for evaluator<T>
template<typename T>
struct evaluator_traits_base
{
// by default, get evaluator kind and shape from storage
typedef typename storage_kind_to_evaluator_kind<typename traits<T>::StorageKind>::Kind Kind;
typedef typename storage_kind_to_shape<typename traits<T>::StorageKind>::Shape Shape;
};
// Default evaluator traits
template<typename T>
struct evaluator_traits : public evaluator_traits_base<T>
{
};
template<typename T, typename Shape = typename evaluator_traits<T>::Shape >
struct evaluator_assume_aliasing {
static const bool value = false;
};
// By default, we assume a unary expression:
template<typename T>
struct evaluator : public unary_evaluator<T>
{
typedef unary_evaluator<T> Base;
EIGEN_DEVICE_FUNC explicit evaluator(const T& xpr) : Base(xpr) {}
};
// TODO: Think about const-correctness
template<typename T>
struct evaluator<const T>
: evaluator<T>
{
EIGEN_DEVICE_FUNC
explicit evaluator(const T& xpr) : evaluator<T>(xpr) {}
};
// ---------- base class for all evaluators ----------
template<typename ExpressionType>
struct evaluator_base : public noncopyable
{
// TODO that's not very nice to have to propagate all these traits. They are currently only needed to handle outer,inner indices.
typedef traits<ExpressionType> ExpressionTraits;
enum {
Alignment = 0
};
};
// -------------------- Matrix and Array --------------------
//
// evaluator<PlainObjectBase> is a common base class for the
// Matrix and Array evaluators.
// Here we directly specialize evaluator. This is not really a unary expression, and it is, by definition, dense,
// so no need for more sophisticated dispatching.
template<typename Derived>
struct evaluator<PlainObjectBase<Derived> >
: evaluator_base<Derived>
{
typedef PlainObjectBase<Derived> PlainObjectType;
typedef typename PlainObjectType::Scalar Scalar;
typedef typename PlainObjectType::CoeffReturnType CoeffReturnType;
enum {
IsRowMajor = PlainObjectType::IsRowMajor,
IsVectorAtCompileTime = PlainObjectType::IsVectorAtCompileTime,
RowsAtCompileTime = PlainObjectType::RowsAtCompileTime,
ColsAtCompileTime = PlainObjectType::ColsAtCompileTime,
CoeffReadCost = NumTraits<Scalar>::ReadCost,
Flags = traits<Derived>::EvaluatorFlags,
Alignment = traits<Derived>::Alignment
};
EIGEN_DEVICE_FUNC evaluator()
: m_data(0),
m_outerStride(IsVectorAtCompileTime ? 0
: int(IsRowMajor) ? ColsAtCompileTime
: RowsAtCompileTime)
{
EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
}
EIGEN_DEVICE_FUNC explicit evaluator(const PlainObjectType& m)
: m_data(m.data()), m_outerStride(IsVectorAtCompileTime ? 0 : m.outerStride())
{
EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(Index row, Index col) const
{
if (IsRowMajor)
return m_data[row * m_outerStride.value() + col];
else
return m_data[row + col * m_outerStride.value()];
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(Index index) const
{
return m_data[index];
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Scalar& coeffRef(Index row, Index col)
{
if (IsRowMajor)
return const_cast<Scalar*>(m_data)[row * m_outerStride.value() + col];
else
return const_cast<Scalar*>(m_data)[row + col * m_outerStride.value()];
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Scalar& coeffRef(Index index)
{
return const_cast<Scalar*>(m_data)[index];
}
template<int LoadMode, typename PacketType>
EIGEN_STRONG_INLINE
PacketType packet(Index row, Index col) const
{
if (IsRowMajor)
return ploadt<PacketType, LoadMode>(m_data + row * m_outerStride.value() + col);
else
return ploadt<PacketType, LoadMode>(m_data + row + col * m_outerStride.value());
}
template<int LoadMode, typename PacketType>
EIGEN_STRONG_INLINE
PacketType packet(Index index) const
{
return ploadt<PacketType, LoadMode>(m_data + index);
}
template<int StoreMode,typename PacketType>
EIGEN_STRONG_INLINE
void writePacket(Index row, Index col, const PacketType& x)
{
if (IsRowMajor)
return pstoret<Scalar, PacketType, StoreMode>
(const_cast<Scalar*>(m_data) + row * m_outerStride.value() + col, x);
else
return pstoret<Scalar, PacketType, StoreMode>
(const_cast<Scalar*>(m_data) + row + col * m_outerStride.value(), x);
}
template<int StoreMode, typename PacketType>
EIGEN_STRONG_INLINE
void writePacket(Index index, const PacketType& x)
{
return pstoret<Scalar, PacketType, StoreMode>(const_cast<Scalar*>(m_data) + index, x);
}
protected:
const Scalar *m_data;
// We do not need to know the outer stride for vectors
variable_if_dynamic<Index, IsVectorAtCompileTime ? 0
: int(IsRowMajor) ? ColsAtCompileTime
: RowsAtCompileTime> m_outerStride;
};
template<typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols>
struct evaluator<Matrix<Scalar, Rows, Cols, Options, MaxRows, MaxCols> >
: evaluator<PlainObjectBase<Matrix<Scalar, Rows, Cols, Options, MaxRows, MaxCols> > >
{
typedef Matrix<Scalar, Rows, Cols, Options, MaxRows, MaxCols> XprType;
EIGEN_DEVICE_FUNC evaluator() {}
EIGEN_DEVICE_FUNC explicit evaluator(const XprType& m)
: evaluator<PlainObjectBase<XprType> >(m)
{ }
};
template<typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols>
struct evaluator<Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> >
: evaluator<PlainObjectBase<Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> > >
{
typedef Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> XprType;
EIGEN_DEVICE_FUNC evaluator() {}
EIGEN_DEVICE_FUNC explicit evaluator(const XprType& m)
: evaluator<PlainObjectBase<XprType> >(m)
{ }
};
// -------------------- Transpose --------------------
template<typename ArgType>
struct unary_evaluator<Transpose<ArgType>, IndexBased>
: evaluator_base<Transpose<ArgType> >
{
typedef Transpose<ArgType> XprType;
enum {
CoeffReadCost = evaluator<ArgType>::CoeffReadCost,
Flags = evaluator<ArgType>::Flags ^ RowMajorBit,
Alignment = evaluator<ArgType>::Alignment
};
EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& t) : m_argImpl(t.nestedExpression()) {}
typedef typename XprType::Scalar Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(Index row, Index col) const
{
return m_argImpl.coeff(col, row);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(Index index) const
{
return m_argImpl.coeff(index);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Scalar& coeffRef(Index row, Index col)
{
return m_argImpl.coeffRef(col, row);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
typename XprType::Scalar& coeffRef(Index index)
{
return m_argImpl.coeffRef(index);
}
template<int LoadMode, typename PacketType>
EIGEN_STRONG_INLINE
PacketType packet(Index row, Index col) const
{
return m_argImpl.template packet<LoadMode,PacketType>(col, row);
}
template<int LoadMode, typename PacketType>
EIGEN_STRONG_INLINE
PacketType packet(Index index) const
{
return m_argImpl.template packet<LoadMode,PacketType>(index);
}
template<int StoreMode, typename PacketType>
EIGEN_STRONG_INLINE
void writePacket(Index row, Index col, const PacketType& x)
{
m_argImpl.template writePacket<StoreMode,PacketType>(col, row, x);
}
template<int StoreMode, typename PacketType>
EIGEN_STRONG_INLINE
void writePacket(Index index, const PacketType& x)
{
m_argImpl.template writePacket<StoreMode,PacketType>(index, x);
}
protected:
evaluator<ArgType> m_argImpl;
};
// -------------------- CwiseNullaryOp --------------------
// Like Matrix and Array, this is not really a unary expression, so we directly specialize evaluator.
// Likewise, there is not need to more sophisticated dispatching here.
template<typename Scalar,typename NullaryOp,
bool has_nullary = has_nullary_operator<NullaryOp>::value,
bool has_unary = has_unary_operator<NullaryOp>::value,
bool has_binary = has_binary_operator<NullaryOp>::value>
struct nullary_wrapper
{
template <typename IndexType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType i, IndexType j) const { return op(i,j); }
template <typename IndexType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType i) const { return op(i); }
template <typename T, typename IndexType> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType i, IndexType j) const { return op.template packetOp<T>(i,j); }
template <typename T, typename IndexType> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType i) const { return op.template packetOp<T>(i); }
};
template<typename Scalar,typename NullaryOp>
struct nullary_wrapper<Scalar,NullaryOp,true,false,false>
{
template <typename IndexType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType=0, IndexType=0) const { return op(); }
template <typename T, typename IndexType> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType=0, IndexType=0) const { return op.template packetOp<T>(); }
};
template<typename Scalar,typename NullaryOp>
struct nullary_wrapper<Scalar,NullaryOp,false,false,true>
{
template <typename IndexType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType i, IndexType j=0) const { return op(i,j); }
template <typename T, typename IndexType> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType i, IndexType j=0) const { return op.template packetOp<T>(i,j); }
};
// We need the following specialization for vector-only functors assigned to a runtime vector,
// for instance, using linspace and assigning a RowVectorXd to a MatrixXd or even a row of a MatrixXd.
// In this case, i==0 and j is used for the actual iteration.
template<typename Scalar,typename NullaryOp>
struct nullary_wrapper<Scalar,NullaryOp,false,true,false>
{
template <typename IndexType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType i, IndexType j) const {
eigen_assert(i==0 || j==0);
return op(i+j);
}
template <typename T, typename IndexType> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType i, IndexType j) const {
eigen_assert(i==0 || j==0);
return op.template packetOp<T>(i+j);
}
template <typename IndexType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType i) const { return op(i); }
template <typename T, typename IndexType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType i) const { return op.template packetOp<T>(i); }
};
template<typename Scalar,typename NullaryOp>
struct nullary_wrapper<Scalar,NullaryOp,false,false,false> {};
#if 0 && EIGEN_COMP_MSVC>0
// Disable this ugly workaround. This is now handled in traits<Ref>::match,
// but this piece of code might still become handly if some other weird compilation
// erros pop up again.
// MSVC exhibits a weird compilation error when
// compiling:
// Eigen::MatrixXf A = MatrixXf::Random(3,3);
// Ref<const MatrixXf> R = 2.f*A;
// and that has_*ary_operator<scalar_constant_op<float>> have not been instantiated yet.
// The "problem" is that evaluator<2.f*A> is instantiated by traits<Ref>::match<2.f*A>
// and at that time has_*ary_operator<T> returns true regardless of T.
// Then nullary_wrapper is badly instantiated as nullary_wrapper<.,.,true,true,true>.
// The trick is thus to defer the proper instantiation of nullary_wrapper when coeff(),
// and packet() are really instantiated as implemented below:
// This is a simple wrapper around Index to enforce the re-instantiation of
// has_*ary_operator when needed.
template<typename T> struct nullary_wrapper_workaround_msvc {
nullary_wrapper_workaround_msvc(const T&);
operator T()const;
};
template<typename Scalar,typename NullaryOp>
struct nullary_wrapper<Scalar,NullaryOp,true,true,true>
{
template <typename IndexType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType i, IndexType j) const {
return nullary_wrapper<Scalar,NullaryOp,
has_nullary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value,
has_unary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value,
has_binary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value>().operator()(op,i,j);
}
template <typename IndexType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType i) const {
return nullary_wrapper<Scalar,NullaryOp,
has_nullary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value,
has_unary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value,
has_binary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value>().operator()(op,i);
}
template <typename T, typename IndexType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType i, IndexType j) const {
return nullary_wrapper<Scalar,NullaryOp,
has_nullary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value,
has_unary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value,
has_binary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value>().template packetOp<T>(op,i,j);
}
template <typename T, typename IndexType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType i) const {
return nullary_wrapper<Scalar,NullaryOp,
has_nullary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value,
has_unary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value,
has_binary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value>().template packetOp<T>(op,i);
}
};
#endif // MSVC workaround
template<typename NullaryOp, typename PlainObjectType>
struct evaluator<CwiseNullaryOp<NullaryOp,PlainObjectType> >
: evaluator_base<CwiseNullaryOp<NullaryOp,PlainObjectType> >
{
typedef CwiseNullaryOp<NullaryOp,PlainObjectType> XprType;
typedef typename internal::remove_all<PlainObjectType>::type PlainObjectTypeCleaned;
enum {
CoeffReadCost = internal::functor_traits<NullaryOp>::Cost,
Flags = (evaluator<PlainObjectTypeCleaned>::Flags
& ( HereditaryBits
| (functor_has_linear_access<NullaryOp>::ret ? LinearAccessBit : 0)
| (functor_traits<NullaryOp>::PacketAccess ? PacketAccessBit : 0)))
| (functor_traits<NullaryOp>::IsRepeatable ? 0 : EvalBeforeNestingBit),
Alignment = AlignedMax
};
EIGEN_DEVICE_FUNC explicit evaluator(const XprType& n)
: m_functor(n.functor()), m_wrapper()
{
EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
}
typedef typename XprType::CoeffReturnType CoeffReturnType;
template <typename IndexType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(IndexType row, IndexType col) const
{
return m_wrapper(m_functor, row, col);
}
template <typename IndexType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(IndexType index) const
{
return m_wrapper(m_functor,index);
}
template<int LoadMode, typename PacketType, typename IndexType>
EIGEN_STRONG_INLINE
PacketType packet(IndexType row, IndexType col) const
{
return m_wrapper.template packetOp<PacketType>(m_functor, row, col);
}
template<int LoadMode, typename PacketType, typename IndexType>
EIGEN_STRONG_INLINE
PacketType packet(IndexType index) const
{
return m_wrapper.template packetOp<PacketType>(m_functor, index);
}
protected:
const NullaryOp m_functor;
const internal::nullary_wrapper<CoeffReturnType,NullaryOp> m_wrapper;
};
// -------------------- CwiseUnaryOp --------------------
template<typename UnaryOp, typename ArgType>
struct unary_evaluator<CwiseUnaryOp<UnaryOp, ArgType>, IndexBased >
: evaluator_base<CwiseUnaryOp<UnaryOp, ArgType> >
{
typedef CwiseUnaryOp<UnaryOp, ArgType> XprType;
enum {
CoeffReadCost = evaluator<ArgType>::CoeffReadCost + functor_traits<UnaryOp>::Cost,
Flags = evaluator<ArgType>::Flags
& (HereditaryBits | LinearAccessBit | (functor_traits<UnaryOp>::PacketAccess ? PacketAccessBit : 0)),
Alignment = evaluator<ArgType>::Alignment
};
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
explicit unary_evaluator(const XprType& op)
: m_functor(op.functor()),
m_argImpl(op.nestedExpression())
{
EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits<UnaryOp>::Cost);
EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
}
typedef typename XprType::CoeffReturnType CoeffReturnType;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(Index row, Index col) const
{
return m_functor(m_argImpl.coeff(row, col));
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(Index index) const
{
return m_functor(m_argImpl.coeff(index));
}
template<int LoadMode, typename PacketType>
EIGEN_STRONG_INLINE
PacketType packet(Index row, Index col) const
{
return m_functor.packetOp(m_argImpl.template packet<LoadMode, PacketType>(row, col));
}
template<int LoadMode, typename PacketType>
EIGEN_STRONG_INLINE
PacketType packet(Index index) const
{
return m_functor.packetOp(m_argImpl.template packet<LoadMode, PacketType>(index));
}
protected:
const UnaryOp m_functor;
evaluator<ArgType> m_argImpl;
};
// -------------------- CwiseTernaryOp --------------------
// this is a ternary expression
template<typename TernaryOp, typename Arg1, typename Arg2, typename Arg3>
struct evaluator<CwiseTernaryOp<TernaryOp, Arg1, Arg2, Arg3> >
: public ternary_evaluator<CwiseTernaryOp<TernaryOp, Arg1, Arg2, Arg3> >
{
typedef CwiseTernaryOp<TernaryOp, Arg1, Arg2, Arg3> XprType;
typedef ternary_evaluator<CwiseTernaryOp<TernaryOp, Arg1, Arg2, Arg3> > Base;
EIGEN_DEVICE_FUNC explicit evaluator(const XprType& xpr) : Base(xpr) {}
};
template<typename TernaryOp, typename Arg1, typename Arg2, typename Arg3>
struct ternary_evaluator<CwiseTernaryOp<TernaryOp, Arg1, Arg2, Arg3>, IndexBased, IndexBased>
: evaluator_base<CwiseTernaryOp<TernaryOp, Arg1, Arg2, Arg3> >
{
typedef CwiseTernaryOp<TernaryOp, Arg1, Arg2, Arg3> XprType;
enum {
CoeffReadCost = evaluator<Arg1>::CoeffReadCost + evaluator<Arg2>::CoeffReadCost + evaluator<Arg3>::CoeffReadCost + functor_traits<TernaryOp>::Cost,
Arg1Flags = evaluator<Arg1>::Flags,
Arg2Flags = evaluator<Arg2>::Flags,
Arg3Flags = evaluator<Arg3>::Flags,
SameType = is_same<typename Arg1::Scalar,typename Arg2::Scalar>::value && is_same<typename Arg1::Scalar,typename Arg3::Scalar>::value,
StorageOrdersAgree = (int(Arg1Flags)&RowMajorBit)==(int(Arg2Flags)&RowMajorBit) && (int(Arg1Flags)&RowMajorBit)==(int(Arg3Flags)&RowMajorBit),
Flags0 = (int(Arg1Flags) | int(Arg2Flags) | int(Arg3Flags)) & (
HereditaryBits
| (int(Arg1Flags) & int(Arg2Flags) & int(Arg3Flags) &
( (StorageOrdersAgree ? LinearAccessBit : 0)
| (functor_traits<TernaryOp>::PacketAccess && StorageOrdersAgree && SameType ? PacketAccessBit : 0)
)
)
),
Flags = (Flags0 & ~RowMajorBit) | (Arg1Flags & RowMajorBit),
Alignment = EIGEN_PLAIN_ENUM_MIN(
EIGEN_PLAIN_ENUM_MIN(evaluator<Arg1>::Alignment, evaluator<Arg2>::Alignment),
evaluator<Arg3>::Alignment)
};
EIGEN_DEVICE_FUNC explicit ternary_evaluator(const XprType& xpr)
: m_functor(xpr.functor()),
m_arg1Impl(xpr.arg1()),
m_arg2Impl(xpr.arg2()),
m_arg3Impl(xpr.arg3())
{
EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits<TernaryOp>::Cost);
EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
}
typedef typename XprType::CoeffReturnType CoeffReturnType;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(Index row, Index col) const
{
return m_functor(m_arg1Impl.coeff(row, col), m_arg2Impl.coeff(row, col), m_arg3Impl.coeff(row, col));
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(Index index) const
{
return m_functor(m_arg1Impl.coeff(index), m_arg2Impl.coeff(index), m_arg3Impl.coeff(index));
}
template<int LoadMode, typename PacketType>
EIGEN_STRONG_INLINE
PacketType packet(Index row, Index col) const
{
return m_functor.packetOp(m_arg1Impl.template packet<LoadMode,PacketType>(row, col),
m_arg2Impl.template packet<LoadMode,PacketType>(row, col),
m_arg3Impl.template packet<LoadMode,PacketType>(row, col));
}
template<int LoadMode, typename PacketType>
EIGEN_STRONG_INLINE
PacketType packet(Index index) const
{
return m_functor.packetOp(m_arg1Impl.template packet<LoadMode,PacketType>(index),
m_arg2Impl.template packet<LoadMode,PacketType>(index),
m_arg3Impl.template packet<LoadMode,PacketType>(index));
}
protected:
const TernaryOp m_functor;
evaluator<Arg1> m_arg1Impl;
evaluator<Arg2> m_arg2Impl;
evaluator<Arg3> m_arg3Impl;
};
// -------------------- CwiseBinaryOp --------------------
// this is a binary expression
template<typename BinaryOp, typename Lhs, typename Rhs>
struct evaluator<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
: public binary_evaluator<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
{
typedef CwiseBinaryOp<BinaryOp, Lhs, Rhs> XprType;
typedef binary_evaluator<CwiseBinaryOp<BinaryOp, Lhs, Rhs> > Base;
EIGEN_DEVICE_FUNC explicit evaluator(const XprType& xpr) : Base(xpr) {}
};
template<typename BinaryOp, typename Lhs, typename Rhs>
struct binary_evaluator<CwiseBinaryOp<BinaryOp, Lhs, Rhs>, IndexBased, IndexBased>
: evaluator_base<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
{
typedef CwiseBinaryOp<BinaryOp, Lhs, Rhs> XprType;
enum {
CoeffReadCost = evaluator<Lhs>::CoeffReadCost + evaluator<Rhs>::CoeffReadCost + functor_traits<BinaryOp>::Cost,
LhsFlags = evaluator<Lhs>::Flags,
RhsFlags = evaluator<Rhs>::Flags,
SameType = is_same<typename Lhs::Scalar,typename Rhs::Scalar>::value,
StorageOrdersAgree = (int(LhsFlags)&RowMajorBit)==(int(RhsFlags)&RowMajorBit),
Flags0 = (int(LhsFlags) | int(RhsFlags)) & (
HereditaryBits
| (int(LhsFlags) & int(RhsFlags) &
( (StorageOrdersAgree ? LinearAccessBit : 0)
| (functor_traits<BinaryOp>::PacketAccess && StorageOrdersAgree && SameType ? PacketAccessBit : 0)
)
)
),
Flags = (Flags0 & ~RowMajorBit) | (LhsFlags & RowMajorBit),
Alignment = EIGEN_PLAIN_ENUM_MIN(evaluator<Lhs>::Alignment,evaluator<Rhs>::Alignment)
};
EIGEN_DEVICE_FUNC explicit binary_evaluator(const XprType& xpr)
: m_functor(xpr.functor()),
m_lhsImpl(xpr.lhs()),
m_rhsImpl(xpr.rhs())
{
EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits<BinaryOp>::Cost);
EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
}
typedef typename XprType::CoeffReturnType CoeffReturnType;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(Index row, Index col) const
{
return m_functor(m_lhsImpl.coeff(row, col), m_rhsImpl.coeff(row, col));
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(Index index) const
{
return m_functor(m_lhsImpl.coeff(index), m_rhsImpl.coeff(index));
}
template<int LoadMode, typename PacketType>
EIGEN_STRONG_INLINE
PacketType packet(Index row, Index col) const
{
return m_functor.packetOp(m_lhsImpl.template packet<LoadMode,PacketType>(row, col),
m_rhsImpl.template packet<LoadMode,PacketType>(row, col));
}
template<int LoadMode, typename PacketType>
EIGEN_STRONG_INLINE
PacketType packet(Index index) const
{
return m_functor.packetOp(m_lhsImpl.template packet<LoadMode,PacketType>(index),
m_rhsImpl.template packet<LoadMode,PacketType>(index));
}
protected:
const BinaryOp m_functor;
evaluator<Lhs> m_lhsImpl;
evaluator<Rhs> m_rhsImpl;
};
// -------------------- CwiseUnaryView --------------------
template<typename UnaryOp, typename ArgType>
struct unary_evaluator<CwiseUnaryView<UnaryOp, ArgType>, IndexBased>
: evaluator_base<CwiseUnaryView<UnaryOp, ArgType> >
{
typedef CwiseUnaryView<UnaryOp, ArgType> XprType;
enum {
CoeffReadCost = evaluator<ArgType>::CoeffReadCost + functor_traits<UnaryOp>::Cost,
Flags = (evaluator<ArgType>::Flags & (HereditaryBits | LinearAccessBit | DirectAccessBit)),
Alignment = 0 // FIXME it is not very clear why alignment is necessarily lost...
};
EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& op)
: m_unaryOp(op.functor()),
m_argImpl(op.nestedExpression())
{
EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits<UnaryOp>::Cost);
EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
}
typedef typename XprType::Scalar Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(Index row, Index col) const
{
return m_unaryOp(m_argImpl.coeff(row, col));
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(Index index) const
{
return m_unaryOp(m_argImpl.coeff(index));
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Scalar& coeffRef(Index row, Index col)
{
return m_unaryOp(m_argImpl.coeffRef(row, col));
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Scalar& coeffRef(Index index)
{
return m_unaryOp(m_argImpl.coeffRef(index));
}
protected:
const UnaryOp m_unaryOp;
evaluator<ArgType> m_argImpl;
};
// -------------------- Map --------------------
// FIXME perhaps the PlainObjectType could be provided by Derived::PlainObject ?
// but that might complicate template specialization
template<typename Derived, typename PlainObjectType>
struct mapbase_evaluator;
template<typename Derived, typename PlainObjectType>
struct mapbase_evaluator : evaluator_base<Derived>
{
typedef Derived XprType;
typedef typename XprType::PointerType PointerType;
typedef typename XprType::Scalar Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
enum {
IsRowMajor = XprType::RowsAtCompileTime,
ColsAtCompileTime = XprType::ColsAtCompileTime,
CoeffReadCost = NumTraits<Scalar>::ReadCost
};
EIGEN_DEVICE_FUNC explicit mapbase_evaluator(const XprType& map)
: m_data(const_cast<PointerType>(map.data())),
m_innerStride(map.innerStride()),
m_outerStride(map.outerStride())
{
EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(evaluator<Derived>::Flags&PacketAccessBit, internal::inner_stride_at_compile_time<Derived>::ret==1),
PACKET_ACCESS_REQUIRES_TO_HAVE_INNER_STRIDE_FIXED_TO_1);
EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(Index row, Index col) const
{
return m_data[col * colStride() + row * rowStride()];
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(Index index) const
{
return m_data[index * m_innerStride.value()];
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Scalar& coeffRef(Index row, Index col)
{
return m_data[col * colStride() + row * rowStride()];
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Scalar& coeffRef(Index index)
{
return m_data[index * m_innerStride.value()];
}
template<int LoadMode, typename PacketType>
EIGEN_STRONG_INLINE
PacketType packet(Index row, Index col) const
{
PointerType ptr = m_data + row * rowStride() + col * colStride();
return internal::ploadt<PacketType, LoadMode>(ptr);
}
template<int LoadMode, typename PacketType>
EIGEN_STRONG_INLINE
PacketType packet(Index index) const
{
return internal::ploadt<PacketType, LoadMode>(m_data + index * m_innerStride.value());
}
template<int StoreMode, typename PacketType>
EIGEN_STRONG_INLINE
void writePacket(Index row, Index col, const PacketType& x)
{
PointerType ptr = m_data + row * rowStride() + col * colStride();
return internal::pstoret<Scalar, PacketType, StoreMode>(ptr, x);
}
template<int StoreMode, typename PacketType>
EIGEN_STRONG_INLINE
void writePacket(Index index, const PacketType& x)
{
internal::pstoret<Scalar, PacketType, StoreMode>(m_data + index * m_innerStride.value(), x);
}
protected:
EIGEN_DEVICE_FUNC
inline Index rowStride() const { return XprType::IsRowMajor ? m_outerStride.value() : m_innerStride.value(); }
EIGEN_DEVICE_FUNC
inline Index colStride() const { return XprType::IsRowMajor ? m_innerStride.value() : m_outerStride.value(); }
PointerType m_data;
const internal::variable_if_dynamic<Index, XprType::InnerStrideAtCompileTime> m_innerStride;
const internal::variable_if_dynamic<Index, XprType::OuterStrideAtCompileTime> m_outerStride;
};
template<typename PlainObjectType, int MapOptions, typename StrideType>
struct evaluator<Map<PlainObjectType, MapOptions, StrideType> >
: public mapbase_evaluator<Map<PlainObjectType, MapOptions, StrideType>, PlainObjectType>
{
typedef Map<PlainObjectType, MapOptions, StrideType> XprType;
typedef typename XprType::Scalar Scalar;
// TODO: should check for smaller packet types once we can handle multi-sized packet types
typedef typename packet_traits<Scalar>::type PacketScalar;
enum {
InnerStrideAtCompileTime = StrideType::InnerStrideAtCompileTime == 0
? int(PlainObjectType::InnerStrideAtCompileTime)
: int(StrideType::InnerStrideAtCompileTime),
OuterStrideAtCompileTime = StrideType::OuterStrideAtCompileTime == 0
? int(PlainObjectType::OuterStrideAtCompileTime)
: int(StrideType::OuterStrideAtCompileTime),
HasNoInnerStride = InnerStrideAtCompileTime == 1,
HasNoOuterStride = StrideType::OuterStrideAtCompileTime == 0,
HasNoStride = HasNoInnerStride && HasNoOuterStride,
IsDynamicSize = PlainObjectType::SizeAtCompileTime==Dynamic,
PacketAccessMask = bool(HasNoInnerStride) ? ~int(0) : ~int(PacketAccessBit),
LinearAccessMask = bool(HasNoStride) || bool(PlainObjectType::IsVectorAtCompileTime) ? ~int(0) : ~int(LinearAccessBit),
Flags = int( evaluator<PlainObjectType>::Flags) & (LinearAccessMask&PacketAccessMask),
Alignment = int(MapOptions)&int(AlignedMask)
};
EIGEN_DEVICE_FUNC explicit evaluator(const XprType& map)
: mapbase_evaluator<XprType, PlainObjectType>(map)
{ }
};
// -------------------- Ref --------------------
template<typename PlainObjectType, int RefOptions, typename StrideType>
struct evaluator<Ref<PlainObjectType, RefOptions, StrideType> >
: public mapbase_evaluator<Ref<PlainObjectType, RefOptions, StrideType>, PlainObjectType>
{
typedef Ref<PlainObjectType, RefOptions, StrideType> XprType;
enum {
Flags = evaluator<Map<PlainObjectType, RefOptions, StrideType> >::Flags,
Alignment = evaluator<Map<PlainObjectType, RefOptions, StrideType> >::Alignment
};
EIGEN_DEVICE_FUNC explicit evaluator(const XprType& ref)
: mapbase_evaluator<XprType, PlainObjectType>(ref)
{ }
};
// -------------------- Block --------------------
template<typename ArgType, int BlockRows, int BlockCols, bool InnerPanel,
bool HasDirectAccess = internal::has_direct_access<ArgType>::ret> struct block_evaluator;
template<typename ArgType, int BlockRows, int BlockCols, bool InnerPanel>
struct evaluator<Block<ArgType, BlockRows, BlockCols, InnerPanel> >
: block_evaluator<ArgType, BlockRows, BlockCols, InnerPanel>
{
typedef Block<ArgType, BlockRows, BlockCols, InnerPanel> XprType;
typedef typename XprType::Scalar Scalar;
// TODO: should check for smaller packet types once we can handle multi-sized packet types
typedef typename packet_traits<Scalar>::type PacketScalar;
enum {
CoeffReadCost = evaluator<ArgType>::CoeffReadCost,
RowsAtCompileTime = traits<XprType>::RowsAtCompileTime,
ColsAtCompileTime = traits<XprType>::ColsAtCompileTime,
MaxRowsAtCompileTime = traits<XprType>::MaxRowsAtCompileTime,
MaxColsAtCompileTime = traits<XprType>::MaxColsAtCompileTime,
ArgTypeIsRowMajor = (int(evaluator<ArgType>::Flags)&RowMajorBit) != 0,
IsRowMajor = (MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1) ? 1
: (MaxColsAtCompileTime==1 && MaxRowsAtCompileTime!=1) ? 0
: ArgTypeIsRowMajor,
HasSameStorageOrderAsArgType = (IsRowMajor == ArgTypeIsRowMajor),
InnerSize = IsRowMajor ? int(ColsAtCompileTime) : int(RowsAtCompileTime),
InnerStrideAtCompileTime = HasSameStorageOrderAsArgType
? int(inner_stride_at_compile_time<ArgType>::ret)
: int(outer_stride_at_compile_time<ArgType>::ret),
OuterStrideAtCompileTime = HasSameStorageOrderAsArgType
? int(outer_stride_at_compile_time<ArgType>::ret)
: int(inner_stride_at_compile_time<ArgType>::ret),
MaskPacketAccessBit = (InnerStrideAtCompileTime == 1) ? PacketAccessBit : 0,
FlagsLinearAccessBit = (RowsAtCompileTime == 1 || ColsAtCompileTime == 1 || (InnerPanel && (evaluator<ArgType>::Flags&LinearAccessBit))) ? LinearAccessBit : 0,
FlagsRowMajorBit = XprType::Flags&RowMajorBit,
Flags0 = evaluator<ArgType>::Flags & ( (HereditaryBits & ~RowMajorBit) |
DirectAccessBit |
MaskPacketAccessBit),
Flags = Flags0 | FlagsLinearAccessBit | FlagsRowMajorBit,
PacketAlignment = unpacket_traits<PacketScalar>::alignment,
Alignment0 = (InnerPanel && (OuterStrideAtCompileTime!=Dynamic) && (((OuterStrideAtCompileTime * int(sizeof(Scalar))) % int(PacketAlignment)) == 0)) ? int(PacketAlignment) : 0,
Alignment = EIGEN_PLAIN_ENUM_MIN(evaluator<ArgType>::Alignment, Alignment0)
};
typedef block_evaluator<ArgType, BlockRows, BlockCols, InnerPanel> block_evaluator_type;
EIGEN_DEVICE_FUNC explicit evaluator(const XprType& block) : block_evaluator_type(block)
{
EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
}
};
// no direct-access => dispatch to a unary evaluator
template<typename ArgType, int BlockRows, int BlockCols, bool InnerPanel>
struct block_evaluator<ArgType, BlockRows, BlockCols, InnerPanel, /*HasDirectAccess*/ false>
: unary_evaluator<Block<ArgType, BlockRows, BlockCols, InnerPanel> >
{
typedef Block<ArgType, BlockRows, BlockCols, InnerPanel> XprType;
EIGEN_DEVICE_FUNC explicit block_evaluator(const XprType& block)
: unary_evaluator<XprType>(block)
{}
};
template<typename ArgType, int BlockRows, int BlockCols, bool InnerPanel>
struct unary_evaluator<Block<ArgType, BlockRows, BlockCols, InnerPanel>, IndexBased>
: evaluator_base<Block<ArgType, BlockRows, BlockCols, InnerPanel> >
{
typedef Block<ArgType, BlockRows, BlockCols, InnerPanel> XprType;
EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& block)
: m_argImpl(block.nestedExpression()),
m_startRow(block.startRow()),
m_startCol(block.startCol())
{ }
typedef typename XprType::Scalar Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
enum {
RowsAtCompileTime = XprType::RowsAtCompileTime
};
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(Index row, Index col) const
{
return m_argImpl.coeff(m_startRow.value() + row, m_startCol.value() + col);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(Index index) const
{
return coeff(RowsAtCompileTime == 1 ? 0 : index, RowsAtCompileTime == 1 ? index : 0);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Scalar& coeffRef(Index row, Index col)
{
return m_argImpl.coeffRef(m_startRow.value() + row, m_startCol.value() + col);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Scalar& coeffRef(Index index)
{
return coeffRef(RowsAtCompileTime == 1 ? 0 : index, RowsAtCompileTime == 1 ? index : 0);
}
template<int LoadMode, typename PacketType>
EIGEN_STRONG_INLINE
PacketType packet(Index row, Index col) const
{
return m_argImpl.template packet<LoadMode,PacketType>(m_startRow.value() + row, m_startCol.value() + col);
}
template<int LoadMode, typename PacketType>
EIGEN_STRONG_INLINE
PacketType packet(Index index) const
{
return packet<LoadMode,PacketType>(RowsAtCompileTime == 1 ? 0 : index,
RowsAtCompileTime == 1 ? index : 0);
}
template<int StoreMode, typename PacketType>
EIGEN_STRONG_INLINE
void writePacket(Index row, Index col, const PacketType& x)
{
return m_argImpl.template writePacket<StoreMode,PacketType>(m_startRow.value() + row, m_startCol.value() + col, x);
}
template<int StoreMode, typename PacketType>
EIGEN_STRONG_INLINE
void writePacket(Index index, const PacketType& x)
{
return writePacket<StoreMode,PacketType>(RowsAtCompileTime == 1 ? 0 : index,
RowsAtCompileTime == 1 ? index : 0,
x);
}
protected:
evaluator<ArgType> m_argImpl;
const variable_if_dynamic<Index, (ArgType::RowsAtCompileTime == 1 && BlockRows==1) ? 0 : Dynamic> m_startRow;
const variable_if_dynamic<Index, (ArgType::ColsAtCompileTime == 1 && BlockCols==1) ? 0 : Dynamic> m_startCol;
};
// TODO: This evaluator does not actually use the child evaluator;
// all action is via the data() as returned by the Block expression.
template<typename ArgType, int BlockRows, int BlockCols, bool InnerPanel>
struct block_evaluator<ArgType, BlockRows, BlockCols, InnerPanel, /* HasDirectAccess */ true>
: mapbase_evaluator<Block<ArgType, BlockRows, BlockCols, InnerPanel>,
typename Block<ArgType, BlockRows, BlockCols, InnerPanel>::PlainObject>
{
typedef Block<ArgType, BlockRows, BlockCols, InnerPanel> XprType;
typedef typename XprType::Scalar Scalar;
EIGEN_DEVICE_FUNC explicit block_evaluator(const XprType& block)
: mapbase_evaluator<XprType, typename XprType::PlainObject>(block)
{
// TODO: for the 3.3 release, this should be turned to an internal assertion, but let's keep it as is for the beta lifetime
eigen_assert(((internal::UIntPtr(block.data()) % EIGEN_PLAIN_ENUM_MAX(1,evaluator<XprType>::Alignment)) == 0) && "data is not aligned");
}
};
// -------------------- Select --------------------
// NOTE shall we introduce a ternary_evaluator?
// TODO enable vectorization for Select
template<typename ConditionMatrixType, typename ThenMatrixType, typename ElseMatrixType>
struct evaluator<Select<ConditionMatrixType, ThenMatrixType, ElseMatrixType> >
: evaluator_base<Select<ConditionMatrixType, ThenMatrixType, ElseMatrixType> >
{
typedef Select<ConditionMatrixType, ThenMatrixType, ElseMatrixType> XprType;
enum {
CoeffReadCost = evaluator<ConditionMatrixType>::CoeffReadCost
+ EIGEN_PLAIN_ENUM_MAX(evaluator<ThenMatrixType>::CoeffReadCost,
evaluator<ElseMatrixType>::CoeffReadCost),
Flags = (unsigned int)evaluator<ThenMatrixType>::Flags & evaluator<ElseMatrixType>::Flags & HereditaryBits,
Alignment = EIGEN_PLAIN_ENUM_MIN(evaluator<ThenMatrixType>::Alignment, evaluator<ElseMatrixType>::Alignment)
};
EIGEN_DEVICE_FUNC explicit evaluator(const XprType& select)
: m_conditionImpl(select.conditionMatrix()),
m_thenImpl(select.thenMatrix()),
m_elseImpl(select.elseMatrix())
{
EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
}
typedef typename XprType::CoeffReturnType CoeffReturnType;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(Index row, Index col) const
{
if (m_conditionImpl.coeff(row, col))
return m_thenImpl.coeff(row, col);
else
return m_elseImpl.coeff(row, col);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(Index index) const
{
if (m_conditionImpl.coeff(index))
return m_thenImpl.coeff(index);
else
return m_elseImpl.coeff(index);
}
protected:
evaluator<ConditionMatrixType> m_conditionImpl;
evaluator<ThenMatrixType> m_thenImpl;
evaluator<ElseMatrixType> m_elseImpl;
};
// -------------------- Replicate --------------------
template<typename ArgType, int RowFactor, int ColFactor>
struct unary_evaluator<Replicate<ArgType, RowFactor, ColFactor> >
: evaluator_base<Replicate<ArgType, RowFactor, ColFactor> >
{
typedef Replicate<ArgType, RowFactor, ColFactor> XprType;
typedef typename XprType::CoeffReturnType CoeffReturnType;
enum {
Factor = (RowFactor==Dynamic || ColFactor==Dynamic) ? Dynamic : RowFactor*ColFactor
};
typedef typename internal::nested_eval<ArgType,Factor>::type ArgTypeNested;
typedef typename internal::remove_all<ArgTypeNested>::type ArgTypeNestedCleaned;
enum {
CoeffReadCost = evaluator<ArgTypeNestedCleaned>::CoeffReadCost,
LinearAccessMask = XprType::IsVectorAtCompileTime ? LinearAccessBit : 0,
Flags = (evaluator<ArgTypeNestedCleaned>::Flags & (HereditaryBits|LinearAccessMask) & ~RowMajorBit) | (traits<XprType>::Flags & RowMajorBit),
Alignment = evaluator<ArgTypeNestedCleaned>::Alignment
};
EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& replicate)
: m_arg(replicate.nestedExpression()),
m_argImpl(m_arg),
m_rows(replicate.nestedExpression().rows()),
m_cols(replicate.nestedExpression().cols())
{}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(Index row, Index col) const
{
// try to avoid using modulo; this is a pure optimization strategy
const Index actual_row = internal::traits<XprType>::RowsAtCompileTime==1 ? 0
: RowFactor==1 ? row
: row % m_rows.value();
const Index actual_col = internal::traits<XprType>::ColsAtCompileTime==1 ? 0
: ColFactor==1 ? col
: col % m_cols.value();
return m_argImpl.coeff(actual_row, actual_col);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(Index index) const
{
// try to avoid using modulo; this is a pure optimization strategy
const Index actual_index = internal::traits<XprType>::RowsAtCompileTime==1
? (ColFactor==1 ? index : index%m_cols.value())
: (RowFactor==1 ? index : index%m_rows.value());
return m_argImpl.coeff(actual_index);
}
template<int LoadMode, typename PacketType>
EIGEN_STRONG_INLINE
PacketType packet(Index row, Index col) const
{
const Index actual_row = internal::traits<XprType>::RowsAtCompileTime==1 ? 0
: RowFactor==1 ? row
: row % m_rows.value();
const Index actual_col = internal::traits<XprType>::ColsAtCompileTime==1 ? 0
: ColFactor==1 ? col
: col % m_cols.value();
return m_argImpl.template packet<LoadMode,PacketType>(actual_row, actual_col);
}
template<int LoadMode, typename PacketType>
EIGEN_STRONG_INLINE
PacketType packet(Index index) const
{
const Index actual_index = internal::traits<XprType>::RowsAtCompileTime==1
? (ColFactor==1 ? index : index%m_cols.value())
: (RowFactor==1 ? index : index%m_rows.value());
return m_argImpl.template packet<LoadMode,PacketType>(actual_index);
}
protected:
const ArgTypeNested m_arg;
evaluator<ArgTypeNestedCleaned> m_argImpl;
const variable_if_dynamic<Index, ArgType::RowsAtCompileTime> m_rows;
const variable_if_dynamic<Index, ArgType::ColsAtCompileTime> m_cols;
};
// -------------------- PartialReduxExpr --------------------
template< typename ArgType, typename MemberOp, int Direction>
struct evaluator<PartialReduxExpr<ArgType, MemberOp, Direction> >
: evaluator_base<PartialReduxExpr<ArgType, MemberOp, Direction> >
{
typedef PartialReduxExpr<ArgType, MemberOp, Direction> XprType;
typedef typename internal::nested_eval<ArgType,1>::type ArgTypeNested;
typedef typename internal::remove_all<ArgTypeNested>::type ArgTypeNestedCleaned;
typedef typename ArgType::Scalar InputScalar;
typedef typename XprType::Scalar Scalar;
enum {
TraversalSize = Direction==int(Vertical) ? int(ArgType::RowsAtCompileTime) : int(ArgType::ColsAtCompileTime)
};
typedef typename MemberOp::template Cost<InputScalar,int(TraversalSize)> CostOpType;
enum {
CoeffReadCost = TraversalSize==Dynamic ? HugeCost
: TraversalSize * evaluator<ArgType>::CoeffReadCost + int(CostOpType::value),
Flags = (traits<XprType>::Flags&RowMajorBit) | (evaluator<ArgType>::Flags&(HereditaryBits&(~RowMajorBit))) | LinearAccessBit,
Alignment = 0 // FIXME this will need to be improved once PartialReduxExpr is vectorized
};
EIGEN_DEVICE_FUNC explicit evaluator(const XprType xpr)
: m_arg(xpr.nestedExpression()), m_functor(xpr.functor())
{
EIGEN_INTERNAL_CHECK_COST_VALUE(TraversalSize==Dynamic ? HugeCost : int(CostOpType::value));
EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
}
typedef typename XprType::CoeffReturnType CoeffReturnType;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const Scalar coeff(Index i, Index j) const
{
if (Direction==Vertical)
return m_functor(m_arg.col(j));
else
return m_functor(m_arg.row(i));
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const Scalar coeff(Index index) const
{
if (Direction==Vertical)
return m_functor(m_arg.col(index));
else
return m_functor(m_arg.row(index));
}
protected:
const ArgTypeNested m_arg;
const MemberOp m_functor;
};
// -------------------- MatrixWrapper and ArrayWrapper --------------------
//
// evaluator_wrapper_base<T> is a common base class for the
// MatrixWrapper and ArrayWrapper evaluators.
template<typename XprType>
struct evaluator_wrapper_base
: evaluator_base<XprType>
{
typedef typename remove_all<typename XprType::NestedExpressionType>::type ArgType;
enum {
CoeffReadCost = evaluator<ArgType>::CoeffReadCost,
Flags = evaluator<ArgType>::Flags,
Alignment = evaluator<ArgType>::Alignment
};
EIGEN_DEVICE_FUNC explicit evaluator_wrapper_base(const ArgType& arg) : m_argImpl(arg) {}
typedef typename ArgType::Scalar Scalar;
typedef typename ArgType::CoeffReturnType CoeffReturnType;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(Index row, Index col) const
{
return m_argImpl.coeff(row, col);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(Index index) const
{
return m_argImpl.coeff(index);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Scalar& coeffRef(Index row, Index col)
{
return m_argImpl.coeffRef(row, col);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Scalar& coeffRef(Index index)
{
return m_argImpl.coeffRef(index);
}
template<int LoadMode, typename PacketType>
EIGEN_STRONG_INLINE
PacketType packet(Index row, Index col) const
{
return m_argImpl.template packet<LoadMode,PacketType>(row, col);
}
template<int LoadMode, typename PacketType>
EIGEN_STRONG_INLINE
PacketType packet(Index index) const
{
return m_argImpl.template packet<LoadMode,PacketType>(index);
}
template<int StoreMode, typename PacketType>
EIGEN_STRONG_INLINE
void writePacket(Index row, Index col, const PacketType& x)
{
m_argImpl.template writePacket<StoreMode>(row, col, x);
}
template<int StoreMode, typename PacketType>
EIGEN_STRONG_INLINE
void writePacket(Index index, const PacketType& x)
{
m_argImpl.template writePacket<StoreMode>(index, x);
}
protected:
evaluator<ArgType> m_argImpl;
};
template<typename TArgType>
struct unary_evaluator<MatrixWrapper<TArgType> >
: evaluator_wrapper_base<MatrixWrapper<TArgType> >
{
typedef MatrixWrapper<TArgType> XprType;
EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& wrapper)
: evaluator_wrapper_base<MatrixWrapper<TArgType> >(wrapper.nestedExpression())
{ }
};
template<typename TArgType>
struct unary_evaluator<ArrayWrapper<TArgType> >
: evaluator_wrapper_base<ArrayWrapper<TArgType> >
{
typedef ArrayWrapper<TArgType> XprType;
EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& wrapper)
: evaluator_wrapper_base<ArrayWrapper<TArgType> >(wrapper.nestedExpression())
{ }
};
// -------------------- Reverse --------------------
// defined in Reverse.h:
template<typename PacketType, bool ReversePacket> struct reverse_packet_cond;
template<typename ArgType, int Direction>
struct unary_evaluator<Reverse<ArgType, Direction> >
: evaluator_base<Reverse<ArgType, Direction> >
{
typedef Reverse<ArgType, Direction> XprType;
typedef typename XprType::Scalar Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
enum {
IsRowMajor = XprType::IsRowMajor,
IsColMajor = !IsRowMajor,
ReverseRow = (Direction == Vertical) || (Direction == BothDirections),
ReverseCol = (Direction == Horizontal) || (Direction == BothDirections),
ReversePacket = (Direction == BothDirections)
|| ((Direction == Vertical) && IsColMajor)
|| ((Direction == Horizontal) && IsRowMajor),
CoeffReadCost = evaluator<ArgType>::CoeffReadCost,
// let's enable LinearAccess only with vectorization because of the product overhead
// FIXME enable DirectAccess with negative strides?
Flags0 = evaluator<ArgType>::Flags,
LinearAccess = ( (Direction==BothDirections) && (int(Flags0)&PacketAccessBit) )
|| ((ReverseRow && XprType::ColsAtCompileTime==1) || (ReverseCol && XprType::RowsAtCompileTime==1))
? LinearAccessBit : 0,
Flags = int(Flags0) & (HereditaryBits | PacketAccessBit | LinearAccess),
Alignment = 0 // FIXME in some rare cases, Alignment could be preserved, like a Vector4f.
};
EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& reverse)
: m_argImpl(reverse.nestedExpression()),
m_rows(ReverseRow ? reverse.nestedExpression().rows() : 1),
m_cols(ReverseCol ? reverse.nestedExpression().cols() : 1)
{ }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(Index row, Index col) const
{
return m_argImpl.coeff(ReverseRow ? m_rows.value() - row - 1 : row,
ReverseCol ? m_cols.value() - col - 1 : col);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(Index index) const
{
return m_argImpl.coeff(m_rows.value() * m_cols.value() - index - 1);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Scalar& coeffRef(Index row, Index col)
{
return m_argImpl.coeffRef(ReverseRow ? m_rows.value() - row - 1 : row,
ReverseCol ? m_cols.value() - col - 1 : col);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Scalar& coeffRef(Index index)
{
return m_argImpl.coeffRef(m_rows.value() * m_cols.value() - index - 1);
}
template<int LoadMode, typename PacketType>
EIGEN_STRONG_INLINE
PacketType packet(Index row, Index col) const
{
enum {
PacketSize = unpacket_traits<PacketType>::size,
OffsetRow = ReverseRow && IsColMajor ? PacketSize : 1,
OffsetCol = ReverseCol && IsRowMajor ? PacketSize : 1
};
typedef internal::reverse_packet_cond<PacketType,ReversePacket> reverse_packet;
return reverse_packet::run(m_argImpl.template packet<LoadMode,PacketType>(
ReverseRow ? m_rows.value() - row - OffsetRow : row,
ReverseCol ? m_cols.value() - col - OffsetCol : col));
}
template<int LoadMode, typename PacketType>
EIGEN_STRONG_INLINE
PacketType packet(Index index) const
{
enum { PacketSize = unpacket_traits<PacketType>::size };
return preverse(m_argImpl.template packet<LoadMode,PacketType>(m_rows.value() * m_cols.value() - index - PacketSize));
}
template<int LoadMode, typename PacketType>
EIGEN_STRONG_INLINE
void writePacket(Index row, Index col, const PacketType& x)
{
// FIXME we could factorize some code with packet(i,j)
enum {
PacketSize = unpacket_traits<PacketType>::size,
OffsetRow = ReverseRow && IsColMajor ? PacketSize : 1,
OffsetCol = ReverseCol && IsRowMajor ? PacketSize : 1
};
typedef internal::reverse_packet_cond<PacketType,ReversePacket> reverse_packet;
m_argImpl.template writePacket<LoadMode>(
ReverseRow ? m_rows.value() - row - OffsetRow : row,
ReverseCol ? m_cols.value() - col - OffsetCol : col,
reverse_packet::run(x));
}
template<int LoadMode, typename PacketType>
EIGEN_STRONG_INLINE
void writePacket(Index index, const PacketType& x)
{
enum { PacketSize = unpacket_traits<PacketType>::size };
m_argImpl.template writePacket<LoadMode>
(m_rows.value() * m_cols.value() - index - PacketSize, preverse(x));
}
protected:
evaluator<ArgType> m_argImpl;
// If we do not reverse rows, then we do not need to know the number of rows; same for columns
// Nonetheless, in this case it is important to set to 1 such that the coeff(index) method works fine for vectors.
const variable_if_dynamic<Index, ReverseRow ? ArgType::RowsAtCompileTime : 1> m_rows;
const variable_if_dynamic<Index, ReverseCol ? ArgType::ColsAtCompileTime : 1> m_cols;
};
// -------------------- Diagonal --------------------
template<typename ArgType, int DiagIndex>
struct evaluator<Diagonal<ArgType, DiagIndex> >
: evaluator_base<Diagonal<ArgType, DiagIndex> >
{
typedef Diagonal<ArgType, DiagIndex> XprType;
enum {
CoeffReadCost = evaluator<ArgType>::CoeffReadCost,
Flags = (unsigned int)(evaluator<ArgType>::Flags & (HereditaryBits | DirectAccessBit) & ~RowMajorBit) | LinearAccessBit,
Alignment = 0
};
EIGEN_DEVICE_FUNC explicit evaluator(const XprType& diagonal)
: m_argImpl(diagonal.nestedExpression()),
m_index(diagonal.index())
{ }
typedef typename XprType::Scalar Scalar;
// FIXME having to check whether ArgType is sparse here i not very nice.
typedef typename internal::conditional<!internal::is_same<typename ArgType::StorageKind,Sparse>::value,
typename XprType::CoeffReturnType,Scalar>::type CoeffReturnType;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(Index row, Index) const
{
return m_argImpl.coeff(row + rowOffset(), row + colOffset());
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
CoeffReturnType coeff(Index index) const
{
return m_argImpl.coeff(index + rowOffset(), index + colOffset());
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Scalar& coeffRef(Index row, Index)
{
return m_argImpl.coeffRef(row + rowOffset(), row + colOffset());
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Scalar& coeffRef(Index index)
{
return m_argImpl.coeffRef(index + rowOffset(), index + colOffset());
}
protected:
evaluator<ArgType> m_argImpl;
const internal::variable_if_dynamicindex<Index, XprType::DiagIndex> m_index;
private:
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rowOffset() const { return m_index.value() > 0 ? 0 : -m_index.value(); }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index colOffset() const { return m_index.value() > 0 ? m_index.value() : 0; }
};
//----------------------------------------------------------------------
// deprecated code
//----------------------------------------------------------------------
// -------------------- EvalToTemp --------------------
// expression class for evaluating nested expression to a temporary
template<typename ArgType> class EvalToTemp;
template<typename ArgType>
struct traits<EvalToTemp<ArgType> >
: public traits<ArgType>
{ };
template<typename ArgType>
class EvalToTemp
: public dense_xpr_base<EvalToTemp<ArgType> >::type
{
public:
typedef typename dense_xpr_base<EvalToTemp>::type Base;
EIGEN_GENERIC_PUBLIC_INTERFACE(EvalToTemp)
explicit EvalToTemp(const ArgType& arg)
: m_arg(arg)
{ }
const ArgType& arg() const
{
return m_arg;
}
Index rows() const
{
return m_arg.rows();
}
Index cols() const
{
return m_arg.cols();
}
private:
const ArgType& m_arg;
};
template<typename ArgType>
struct evaluator<EvalToTemp<ArgType> >
: public evaluator<typename ArgType::PlainObject>
{
typedef EvalToTemp<ArgType> XprType;
typedef typename ArgType::PlainObject PlainObject;
typedef evaluator<PlainObject> Base;
EIGEN_DEVICE_FUNC explicit evaluator(const XprType& xpr)
: m_result(xpr.arg())
{
::new (static_cast<Base*>(this)) Base(m_result);
}
// This constructor is used when nesting an EvalTo evaluator in another evaluator
EIGEN_DEVICE_FUNC evaluator(const ArgType& arg)
: m_result(arg)
{
::new (static_cast<Base*>(this)) Base(m_result);
}
protected:
PlainObject m_result;
};
} // namespace internal
} // end namespace Eigen
#endif // EIGEN_COREEVALUATORS_H