mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-07-09 06:31:47 +08:00

df9dfa145547529bf71afd4c6e8f3af947acaad0 This is what is needed to make Step (in KDE/kdeedu) build. The rest of Eigen (outside of Sparse) is unaffected except for a few trivial changes that were needed. calling this 2.0.3, will tag if no problem.
290 lines
9.9 KiB
C++
290 lines
9.9 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra. Eigen itself is part of the KDE project.
|
|
//
|
|
// Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#ifndef EIGEN_UMFPACKSUPPORT_H
|
|
#define EIGEN_UMFPACKSUPPORT_H
|
|
|
|
/* TODO extract L, extract U, compute det, etc... */
|
|
|
|
// generic double/complex<double> wrapper functions:
|
|
|
|
inline void umfpack_free_numeric(void **Numeric, double)
|
|
{ umfpack_di_free_numeric(Numeric); }
|
|
|
|
inline void umfpack_free_numeric(void **Numeric, std::complex<double>)
|
|
{ umfpack_zi_free_numeric(Numeric); }
|
|
|
|
inline void umfpack_free_symbolic(void **Symbolic, double)
|
|
{ umfpack_di_free_symbolic(Symbolic); }
|
|
|
|
inline void umfpack_free_symbolic(void **Symbolic, std::complex<double>)
|
|
{ umfpack_zi_free_symbolic(Symbolic); }
|
|
|
|
inline int umfpack_symbolic(int n_row,int n_col,
|
|
const int Ap[], const int Ai[], const double Ax[], void **Symbolic,
|
|
const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO])
|
|
{
|
|
return umfpack_di_symbolic(n_row,n_col,Ap,Ai,Ax,Symbolic,Control,Info);
|
|
}
|
|
|
|
inline int umfpack_symbolic(int n_row,int n_col,
|
|
const int Ap[], const int Ai[], const std::complex<double> Ax[], void **Symbolic,
|
|
const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO])
|
|
{
|
|
return umfpack_zi_symbolic(n_row,n_col,Ap,Ai,&Ax[0].real(),0,Symbolic,Control,Info);
|
|
}
|
|
|
|
inline int umfpack_numeric( const int Ap[], const int Ai[], const double Ax[],
|
|
void *Symbolic, void **Numeric,
|
|
const double Control[UMFPACK_CONTROL],double Info [UMFPACK_INFO])
|
|
{
|
|
return umfpack_di_numeric(Ap,Ai,Ax,Symbolic,Numeric,Control,Info);
|
|
}
|
|
|
|
inline int umfpack_numeric( const int Ap[], const int Ai[], const std::complex<double> Ax[],
|
|
void *Symbolic, void **Numeric,
|
|
const double Control[UMFPACK_CONTROL],double Info [UMFPACK_INFO])
|
|
{
|
|
return umfpack_zi_numeric(Ap,Ai,&Ax[0].real(),0,Symbolic,Numeric,Control,Info);
|
|
}
|
|
|
|
inline int umfpack_solve( int sys, const int Ap[], const int Ai[], const double Ax[],
|
|
double X[], const double B[], void *Numeric,
|
|
const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
|
|
{
|
|
return umfpack_di_solve(sys,Ap,Ai,Ax,X,B,Numeric,Control,Info);
|
|
}
|
|
|
|
inline int umfpack_solve( int sys, const int Ap[], const int Ai[], const std::complex<double> Ax[],
|
|
std::complex<double> X[], const std::complex<double> B[], void *Numeric,
|
|
const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
|
|
{
|
|
return umfpack_zi_solve(sys,Ap,Ai,&Ax[0].real(),0,&X[0].real(),0,&B[0].real(),0,Numeric,Control,Info);
|
|
}
|
|
|
|
inline int umfpack_get_lunz(int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, double)
|
|
{
|
|
return umfpack_di_get_lunz(lnz,unz,n_row,n_col,nz_udiag,Numeric);
|
|
}
|
|
|
|
inline int umfpack_get_lunz(int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, std::complex<double>)
|
|
{
|
|
return umfpack_zi_get_lunz(lnz,unz,n_row,n_col,nz_udiag,Numeric);
|
|
}
|
|
|
|
inline int umfpack_get_numeric(int Lp[], int Lj[], double Lx[], int Up[], int Ui[], double Ux[],
|
|
int P[], int Q[], double Dx[], int *do_recip, double Rs[], void *Numeric)
|
|
{
|
|
return umfpack_di_get_numeric(Lp,Lj,Lx,Up,Ui,Ux,P,Q,Dx,do_recip,Rs,Numeric);
|
|
}
|
|
|
|
inline int umfpack_get_numeric(int Lp[], int Lj[], std::complex<double> Lx[], int Up[], int Ui[], std::complex<double> Ux[],
|
|
int P[], int Q[], std::complex<double> Dx[], int *do_recip, double Rs[], void *Numeric)
|
|
{
|
|
return umfpack_zi_get_numeric(Lp,Lj,Lx?&Lx[0].real():0,0,Up,Ui,Ux?&Ux[0].real():0,0,P,Q,
|
|
Dx?&Dx[0].real():0,0,do_recip,Rs,Numeric);
|
|
}
|
|
|
|
inline int umfpack_get_determinant(double *Mx, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO])
|
|
{
|
|
return umfpack_di_get_determinant(Mx,Ex,NumericHandle,User_Info);
|
|
}
|
|
|
|
inline int umfpack_get_determinant(std::complex<double> *Mx, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO])
|
|
{
|
|
return umfpack_zi_get_determinant(&Mx->real(),0,Ex,NumericHandle,User_Info);
|
|
}
|
|
|
|
|
|
template<typename MatrixType>
|
|
class SparseLU<MatrixType,UmfPack> : public SparseLU<MatrixType>
|
|
{
|
|
protected:
|
|
typedef SparseLU<MatrixType> Base;
|
|
typedef typename Base::Scalar Scalar;
|
|
typedef typename Base::RealScalar RealScalar;
|
|
typedef Matrix<Scalar,Dynamic,1> Vector;
|
|
typedef Matrix<int, 1, MatrixType::ColsAtCompileTime> IntRowVectorType;
|
|
typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType;
|
|
typedef SparseMatrix<Scalar,LowerTriangular|UnitDiagBit> LMatrixType;
|
|
typedef SparseMatrix<Scalar,UpperTriangular> UMatrixType;
|
|
using Base::m_flags;
|
|
using Base::m_status;
|
|
|
|
public:
|
|
|
|
SparseLU(int flags = NaturalOrdering)
|
|
: Base(flags), m_numeric(0)
|
|
{
|
|
}
|
|
|
|
SparseLU(const MatrixType& matrix, int flags = NaturalOrdering)
|
|
: Base(flags), m_numeric(0)
|
|
{
|
|
compute(matrix);
|
|
}
|
|
|
|
~SparseLU()
|
|
{
|
|
if (m_numeric)
|
|
umfpack_free_numeric(&m_numeric,Scalar());
|
|
}
|
|
|
|
inline const LMatrixType& matrixL() const
|
|
{
|
|
if (m_extractedDataAreDirty) extractData();
|
|
return m_l;
|
|
}
|
|
|
|
inline const UMatrixType& matrixU() const
|
|
{
|
|
if (m_extractedDataAreDirty) extractData();
|
|
return m_u;
|
|
}
|
|
|
|
inline const IntColVectorType& permutationP() const
|
|
{
|
|
if (m_extractedDataAreDirty) extractData();
|
|
return m_p;
|
|
}
|
|
|
|
inline const IntRowVectorType& permutationQ() const
|
|
{
|
|
if (m_extractedDataAreDirty) extractData();
|
|
return m_q;
|
|
}
|
|
|
|
Scalar determinant() const;
|
|
|
|
template<typename BDerived, typename XDerived>
|
|
bool solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived>* x) const;
|
|
|
|
void compute(const MatrixType& matrix);
|
|
|
|
protected:
|
|
|
|
void extractData() const;
|
|
|
|
protected:
|
|
// cached data:
|
|
void* m_numeric;
|
|
const MatrixType* m_matrixRef;
|
|
mutable LMatrixType m_l;
|
|
mutable UMatrixType m_u;
|
|
mutable IntColVectorType m_p;
|
|
mutable IntRowVectorType m_q;
|
|
mutable bool m_extractedDataAreDirty;
|
|
};
|
|
|
|
template<typename MatrixType>
|
|
void SparseLU<MatrixType,UmfPack>::compute(const MatrixType& a)
|
|
{
|
|
const int rows = a.rows();
|
|
const int cols = a.cols();
|
|
ei_assert((MatrixType::Flags&RowMajorBit)==0 && "Row major matrices are not supported yet");
|
|
|
|
m_matrixRef = &a;
|
|
|
|
if (m_numeric)
|
|
umfpack_free_numeric(&m_numeric,Scalar());
|
|
|
|
void* symbolic;
|
|
int errorCode = 0;
|
|
errorCode = umfpack_symbolic(rows, cols, a._outerIndexPtr(), a._innerIndexPtr(), a._valuePtr(),
|
|
&symbolic, 0, 0);
|
|
if (errorCode==0)
|
|
errorCode = umfpack_numeric(a._outerIndexPtr(), a._innerIndexPtr(), a._valuePtr(),
|
|
symbolic, &m_numeric, 0, 0);
|
|
|
|
umfpack_free_symbolic(&symbolic,Scalar());
|
|
|
|
m_extractedDataAreDirty = true;
|
|
|
|
Base::m_succeeded = (errorCode==0);
|
|
}
|
|
|
|
template<typename MatrixType>
|
|
void SparseLU<MatrixType,UmfPack>::extractData() const
|
|
{
|
|
if (m_extractedDataAreDirty)
|
|
{
|
|
// get size of the data
|
|
int lnz, unz, rows, cols, nz_udiag;
|
|
umfpack_get_lunz(&lnz, &unz, &rows, &cols, &nz_udiag, m_numeric, Scalar());
|
|
|
|
// allocate data
|
|
m_l.resize(rows,std::min(rows,cols));
|
|
m_l.resizeNonZeros(lnz);
|
|
|
|
m_u.resize(std::min(rows,cols),cols);
|
|
m_u.resizeNonZeros(unz);
|
|
|
|
m_p.resize(rows);
|
|
m_q.resize(cols);
|
|
|
|
// extract
|
|
umfpack_get_numeric(m_l._outerIndexPtr(), m_l._innerIndexPtr(), m_l._valuePtr(),
|
|
m_u._outerIndexPtr(), m_u._innerIndexPtr(), m_u._valuePtr(),
|
|
m_p.data(), m_q.data(), 0, 0, 0, m_numeric);
|
|
|
|
m_extractedDataAreDirty = false;
|
|
}
|
|
}
|
|
|
|
template<typename MatrixType>
|
|
typename SparseLU<MatrixType,UmfPack>::Scalar SparseLU<MatrixType,UmfPack>::determinant() const
|
|
{
|
|
Scalar det;
|
|
umfpack_get_determinant(&det, 0, m_numeric, 0);
|
|
return det;
|
|
}
|
|
|
|
template<typename MatrixType>
|
|
template<typename BDerived,typename XDerived>
|
|
bool SparseLU<MatrixType,UmfPack>::solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived> *x) const
|
|
{
|
|
//const int size = m_matrix.rows();
|
|
const int rhsCols = b.cols();
|
|
// ei_assert(size==b.rows());
|
|
ei_assert((BDerived::Flags&RowMajorBit)==0 && "UmfPack backend does not support non col-major rhs yet");
|
|
ei_assert((XDerived::Flags&RowMajorBit)==0 && "UmfPack backend does not support non col-major result yet");
|
|
|
|
int errorCode;
|
|
for (int j=0; j<rhsCols; ++j)
|
|
{
|
|
errorCode = umfpack_solve(UMFPACK_A,
|
|
m_matrixRef->_outerIndexPtr(), m_matrixRef->_innerIndexPtr(), m_matrixRef->_valuePtr(),
|
|
&x->col(j).coeffRef(0), &b.const_cast_derived().col(j).coeffRef(0), m_numeric, 0, 0);
|
|
if (errorCode!=0)
|
|
return false;
|
|
}
|
|
// errorCode = umfpack_di_solve(UMFPACK_A,
|
|
// m_matrixRef._outerIndexPtr(), m_matrixRef._innerIndexPtr(), m_matrixRef._valuePtr(),
|
|
// x->derived().data(), b.derived().data(), m_numeric, 0, 0);
|
|
|
|
return true;
|
|
}
|
|
|
|
#endif // EIGEN_UMFPACKSUPPORT_H
|