eigen/test/nomalloc.cpp
Adolfo Rodriguez Tsouroukdissian 5a36f4a8d1 Propagate all five matrix template parameters to members and temporaries of decomposition classes. One particular advantage of this is that decomposing matrices with max sizes known at compile time will not allocate.
NOTE: The ComplexEigenSolver class currently _does_ allocate (line 135 of Eigenvalues/ComplexEigenSolver.h), but the reason appears to be in the implementation of matrix-matrix products, and not in the decomposition itself.
The nomalloc unit test has been extended to verify that decompositions do not allocate when max sizes are specified. There are currently two workarounds to prevent the test from failing (see comments in test/nomalloc.cpp), both of which are related to matrix products that allocate on the stack.
2010-03-08 19:31:27 +01:00

145 lines
5.8 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
// this hack is needed to make this file compiles with -pedantic (gcc)
#ifdef __GNUC__
#define throw(X)
#endif
// discard stack allocation as that too bypasses malloc
#define EIGEN_STACK_ALLOCATION_LIMIT 0
// any heap allocation will raise an assert
#define EIGEN_NO_MALLOC
#include "main.h"
#include <Eigen/Cholesky>
#include <Eigen/Eigenvalues>
#include <Eigen/LU>
#include <Eigen/QR>
#include <Eigen/SVD>
template<typename MatrixType> void nomalloc(const MatrixType& m)
{
/* this test check no dynamic memory allocation are issued with fixed-size matrices
*/
typedef typename MatrixType::Scalar Scalar;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
int rows = m.rows();
int cols = m.cols();
MatrixType m1 = MatrixType::Random(rows, cols),
m2 = MatrixType::Random(rows, cols),
m3(rows, cols),
mzero = MatrixType::Zero(rows, cols),
identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
::Identity(rows, rows),
square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
::Random(rows, rows);
VectorType v1 = VectorType::Random(rows),
v2 = VectorType::Random(rows),
vzero = VectorType::Zero(rows);
Scalar s1 = ei_random<Scalar>();
int r = ei_random<int>(0, rows-1),
c = ei_random<int>(0, cols-1);
VERIFY_IS_APPROX((m1+m2)*s1, s1*m1+s1*m2);
VERIFY_IS_APPROX((m1+m2)(r,c), (m1(r,c))+(m2(r,c)));
VERIFY_IS_APPROX(m1.cwiseProduct(m1.block(0,0,rows,cols)), (m1.array()*m1.array()).matrix());
if (MatrixType::RowsAtCompileTime<EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD) {
// If the matrices are too large, we have better to use the optimized GEMM
// routines which allocates temporaries. However, on some platforms
// these temporaries are allocated on the stack using alloca.
VERIFY_IS_APPROX((m1*m1.transpose())*m2, m1*(m1.transpose()*m2));
}
}
void ctms_decompositions()
{
const int maxSize = 16;
const int size = 12;
typedef Eigen::Matrix<float,
Eigen::Dynamic, Eigen::Dynamic,
Eigen::ColMajor | Eigen::AutoAlign,
maxSize, maxSize> Matrix;
typedef Eigen::Matrix<float,
Eigen::Dynamic, 1,
Eigen::ColMajor | Eigen::AutoAlign,
maxSize, 1> Vector;
typedef Eigen::Matrix<std::complex<float>,
Eigen::Dynamic, Eigen::Dynamic,
Eigen::ColMajor | Eigen::AutoAlign,
maxSize, maxSize> ComplexMatrix;
const Matrix A(Matrix::Random(size, size));
const ComplexMatrix complexA(ComplexMatrix::Random(size, size));
// const Matrix saA = A.adjoint() * A; // NOTE: This product allocates on the stack. The two following lines are a kludgy workaround
Matrix saA(Matrix::Constant(size, size, 1.0));
saA.diagonal().setConstant(2.0);
// Cholesky module
Eigen::LLT<Matrix> LLT; LLT.compute(A);
Eigen::LDLT<Matrix> LDLT; LDLT.compute(A);
// Eigenvalues module
Eigen::HessenbergDecomposition<ComplexMatrix> hessDecomp; hessDecomp.compute(complexA);
Eigen::ComplexSchur<ComplexMatrix> cSchur(size); cSchur.compute(complexA);
Eigen::ComplexEigenSolver<ComplexMatrix> cEigSolver; //cEigSolver.compute(complexA); // NOTE: Commented-out because makes test fail (L135 of ComplexEigenSolver.h has a product that allocates on the stack)
Eigen::EigenSolver<Matrix> eigSolver; eigSolver.compute(A);
Eigen::SelfAdjointEigenSolver<Matrix> saEigSolver(size); saEigSolver.compute(saA);
Eigen::Tridiagonalization<Matrix> tridiag; tridiag.compute(saA);
// LU module
Eigen::PartialPivLU<Matrix> ppLU; ppLU.compute(A);
Eigen::FullPivLU<Matrix> fpLU; fpLU.compute(A);
// QR module
Eigen::HouseholderQR<Matrix> hQR; hQR.compute(A);
Eigen::ColPivHouseholderQR<Matrix> cpQR; cpQR.compute(A);
Eigen::FullPivHouseholderQR<Matrix> fpQR; fpQR.compute(A);
// SVD module
Eigen::JacobiSVD<Matrix> jSVD; jSVD.compute(A);
Eigen::SVD<Matrix> svd; svd.compute(A);
}
void test_nomalloc()
{
// check that our operator new is indeed called:
VERIFY_RAISES_ASSERT(MatrixXd dummy = MatrixXd::Random(3,3));
CALL_SUBTEST(nomalloc(Matrix<float, 1, 1>()) );
CALL_SUBTEST(nomalloc(Matrix4d()) );
CALL_SUBTEST(nomalloc(Matrix<float,32,32>()) );
// Check decomposition modules with dynamic matrices that have a known compile-time max size (ctms)
CALL_SUBTEST(ctms_decompositions());
}