mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-05-25 07:36:56 +08:00
372 lines
14 KiB
C++
372 lines
14 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_CXX11_TENSOR_TENSOR_PADDING_H
|
|
#define EIGEN_CXX11_TENSOR_TENSOR_PADDING_H
|
|
|
|
namespace Eigen {
|
|
|
|
/** \class TensorPadding
|
|
* \ingroup CXX11_Tensor_Module
|
|
*
|
|
* \brief Tensor padding class.
|
|
* At the moment only 0-padding is supported.
|
|
*
|
|
*/
|
|
namespace internal {
|
|
template<typename PaddingDimensions, typename XprType>
|
|
struct traits<TensorPaddingOp<PaddingDimensions, XprType> > : public traits<XprType>
|
|
{
|
|
typedef typename XprType::Scalar Scalar;
|
|
typedef traits<XprType> XprTraits;
|
|
typedef typename packet_traits<Scalar>::type Packet;
|
|
typedef typename XprTraits::StorageKind StorageKind;
|
|
typedef typename XprTraits::Index Index;
|
|
typedef typename XprType::Nested Nested;
|
|
typedef typename remove_reference<Nested>::type _Nested;
|
|
static const int NumDimensions = XprTraits::NumDimensions;
|
|
static const int Layout = XprTraits::Layout;
|
|
};
|
|
|
|
template<typename PaddingDimensions, typename XprType>
|
|
struct eval<TensorPaddingOp<PaddingDimensions, XprType>, Eigen::Dense>
|
|
{
|
|
typedef const TensorPaddingOp<PaddingDimensions, XprType>& type;
|
|
};
|
|
|
|
template<typename PaddingDimensions, typename XprType>
|
|
struct nested<TensorPaddingOp<PaddingDimensions, XprType>, 1, typename eval<TensorPaddingOp<PaddingDimensions, XprType> >::type>
|
|
{
|
|
typedef TensorPaddingOp<PaddingDimensions, XprType> type;
|
|
};
|
|
|
|
} // end namespace internal
|
|
|
|
|
|
|
|
template<typename PaddingDimensions, typename XprType>
|
|
class TensorPaddingOp : public TensorBase<TensorPaddingOp<PaddingDimensions, XprType>, ReadOnlyAccessors>
|
|
{
|
|
public:
|
|
typedef typename Eigen::internal::traits<TensorPaddingOp>::Scalar Scalar;
|
|
typedef typename Eigen::internal::traits<TensorPaddingOp>::Packet Packet;
|
|
typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
|
|
typedef typename XprType::CoeffReturnType CoeffReturnType;
|
|
typedef typename XprType::PacketReturnType PacketReturnType;
|
|
typedef typename Eigen::internal::nested<TensorPaddingOp>::type Nested;
|
|
typedef typename Eigen::internal::traits<TensorPaddingOp>::StorageKind StorageKind;
|
|
typedef typename Eigen::internal::traits<TensorPaddingOp>::Index Index;
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorPaddingOp(const XprType& expr, const PaddingDimensions& padding_dims)
|
|
: m_xpr(expr), m_padding_dims(padding_dims) {}
|
|
|
|
EIGEN_DEVICE_FUNC
|
|
const PaddingDimensions& padding() const { return m_padding_dims; }
|
|
|
|
EIGEN_DEVICE_FUNC
|
|
const typename internal::remove_all<typename XprType::Nested>::type&
|
|
expression() const { return m_xpr; }
|
|
|
|
protected:
|
|
typename XprType::Nested m_xpr;
|
|
const PaddingDimensions m_padding_dims;
|
|
};
|
|
|
|
|
|
// Eval as rvalue
|
|
template<typename PaddingDimensions, typename ArgType, typename Device>
|
|
struct TensorEvaluator<const TensorPaddingOp<PaddingDimensions, ArgType>, Device>
|
|
{
|
|
typedef TensorPaddingOp<PaddingDimensions, ArgType> XprType;
|
|
typedef typename XprType::Index Index;
|
|
static const int NumDims = internal::array_size<PaddingDimensions>::value;
|
|
typedef DSizes<Index, NumDims> Dimensions;
|
|
|
|
enum {
|
|
IsAligned = false,
|
|
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
|
|
Layout = TensorEvaluator<ArgType, Device>::Layout,
|
|
CoordAccess = true,
|
|
RawAccess = false
|
|
};
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
|
|
: m_impl(op.expression(), device), m_padding(op.padding())
|
|
{
|
|
// The padding op doesn't change the rank of the tensor. Directly padding a scalar would lead
|
|
// to a vector, which doesn't make sense. Instead one should reshape the scalar into a vector
|
|
// of 1 element first and then pad.
|
|
EIGEN_STATIC_ASSERT(NumDims > 0, YOU_MADE_A_PROGRAMMING_MISTAKE);
|
|
|
|
// Compute dimensions
|
|
m_dimensions = m_impl.dimensions();
|
|
for (int i = 0; i < NumDims; ++i) {
|
|
m_dimensions[i] += m_padding[i].first + m_padding[i].second;
|
|
}
|
|
const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
|
|
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
|
|
m_inputStrides[0] = 1;
|
|
m_outputStrides[0] = 1;
|
|
for (int i = 1; i < NumDims; ++i) {
|
|
m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1];
|
|
m_outputStrides[i] = m_outputStrides[i-1] * m_dimensions[i-1];
|
|
}
|
|
m_outputStrides[NumDims] = m_outputStrides[NumDims-1] * m_dimensions[NumDims-1];
|
|
} else {
|
|
m_inputStrides[NumDims - 1] = 1;
|
|
m_outputStrides[NumDims] = 1;
|
|
for (int i = NumDims - 2; i >= 0; --i) {
|
|
m_inputStrides[i] = m_inputStrides[i+1] * input_dims[i+1];
|
|
m_outputStrides[i+1] = m_outputStrides[i+2] * m_dimensions[i+1];
|
|
}
|
|
m_outputStrides[0] = m_outputStrides[1] * m_dimensions[0];
|
|
}
|
|
}
|
|
|
|
typedef typename XprType::Scalar Scalar;
|
|
typedef typename XprType::CoeffReturnType CoeffReturnType;
|
|
typedef typename XprType::PacketReturnType PacketReturnType;
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar*) {
|
|
m_impl.evalSubExprsIfNeeded(NULL);
|
|
return true;
|
|
}
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
|
|
m_impl.cleanup();
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
|
|
{
|
|
eigen_assert(index < dimensions().TotalSize());
|
|
Index inputIndex = 0;
|
|
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
|
|
for (int i = NumDims - 1; i > 0; --i) {
|
|
const Index idx = index / m_outputStrides[i];
|
|
if (idx < m_padding[i].first || idx >= m_dimensions[i] - m_padding[i].second) {
|
|
return Scalar(0);
|
|
}
|
|
inputIndex += (idx - m_padding[i].first) * m_inputStrides[i];
|
|
index -= idx * m_outputStrides[i];
|
|
}
|
|
if (index < m_padding[0].first || index >= m_dimensions[0] - m_padding[0].second) {
|
|
return Scalar(0);
|
|
}
|
|
inputIndex += (index - m_padding[0].first);
|
|
} else {
|
|
for (int i = 0; i < NumDims - 1; ++i) {
|
|
const Index idx = index / m_outputStrides[i+1];
|
|
if (idx < m_padding[i].first || idx >= m_dimensions[i] - m_padding[i].second) {
|
|
return Scalar(0);
|
|
}
|
|
inputIndex += (idx - m_padding[i].first) * m_inputStrides[i];
|
|
index -= idx * m_outputStrides[i+1];
|
|
}
|
|
if (index < m_padding[NumDims-1].first ||
|
|
index >= m_dimensions[NumDims-1] - m_padding[NumDims-1].second) {
|
|
return Scalar(0);
|
|
}
|
|
inputIndex += (index - m_padding[NumDims-1].first);
|
|
}
|
|
return m_impl.coeff(inputIndex);
|
|
}
|
|
|
|
template<int LoadMode>
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
|
|
{
|
|
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
|
|
return packetColMajor(index);
|
|
}
|
|
return packetRowMajor(index);
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(const array<Index, NumDims>& coords) const
|
|
{
|
|
Index inputIndex;
|
|
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
|
|
{
|
|
const Index idx = coords[0];
|
|
if (idx < m_padding[0].first || idx >= m_dimensions[0] - m_padding[0].second) {
|
|
return Scalar(0);
|
|
}
|
|
inputIndex = idx - m_padding[0].first;
|
|
}
|
|
for (int i = 1; i < NumDims; ++i) {
|
|
const Index idx = coords[i];
|
|
if (idx < m_padding[i].first || idx >= m_dimensions[i] - m_padding[i].second) {
|
|
return Scalar(0);
|
|
}
|
|
inputIndex += (idx - m_padding[i].first) * m_inputStrides[i];
|
|
}
|
|
} else {
|
|
{
|
|
const Index idx = coords[NumDims-1];
|
|
if (idx < m_padding[NumDims-1].first || idx >= m_dimensions[NumDims-1] - m_padding[NumDims-1].second) {
|
|
return Scalar(0);
|
|
}
|
|
inputIndex = idx - m_padding[NumDims-1].first;
|
|
}
|
|
for (int i = NumDims - 2; i >= 0; --i) {
|
|
const Index idx = coords[i];
|
|
if (idx < m_padding[i].first || idx >= m_dimensions[i] - m_padding[i].second) {
|
|
return Scalar(0);
|
|
}
|
|
inputIndex += (idx - m_padding[i].first) * m_inputStrides[i];
|
|
}
|
|
}
|
|
return m_impl.coeff(inputIndex);
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
|
|
|
|
protected:
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetColMajor(Index index) const
|
|
{
|
|
const int packetSize = internal::unpacket_traits<PacketReturnType>::size;
|
|
EIGEN_STATIC_ASSERT(packetSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
|
|
eigen_assert(index+packetSize-1 < dimensions().TotalSize());
|
|
|
|
const Index initialIndex = index;
|
|
Index inputIndex = 0;
|
|
for (int i = NumDims - 1; i > 0; --i) {
|
|
const Index first = index;
|
|
const Index last = index + packetSize - 1;
|
|
const Index lastPaddedLeft = m_padding[i].first * m_outputStrides[i];
|
|
const Index firstPaddedRight = (m_dimensions[i] - m_padding[i].second) * m_outputStrides[i];
|
|
const Index lastPaddedRight = m_outputStrides[i+1];
|
|
|
|
if (last < lastPaddedLeft) {
|
|
// all the coefficient are in the padding zone.
|
|
return internal::pset1<PacketReturnType>(Scalar(0));
|
|
}
|
|
else if (first >= firstPaddedRight && last < lastPaddedRight) {
|
|
// all the coefficient are in the padding zone.
|
|
return internal::pset1<PacketReturnType>(Scalar(0));
|
|
}
|
|
else if (first >= lastPaddedLeft && last < firstPaddedRight) {
|
|
// all the coefficient are between the 2 padding zones.
|
|
const Index idx = index / m_outputStrides[i];
|
|
inputIndex += (idx - m_padding[i].first) * m_inputStrides[i];
|
|
index -= idx * m_outputStrides[i];
|
|
}
|
|
else {
|
|
// Every other case
|
|
return packetWithPossibleZero(initialIndex);
|
|
}
|
|
}
|
|
|
|
const Index last = index + packetSize - 1;
|
|
const Index first = index;
|
|
const Index lastPaddedLeft = m_padding[0].first;
|
|
const Index firstPaddedRight = (m_dimensions[0] - m_padding[0].second);
|
|
const Index lastPaddedRight = m_outputStrides[1];
|
|
|
|
if (last < lastPaddedLeft) {
|
|
// all the coefficient are in the padding zone.
|
|
return internal::pset1<PacketReturnType>(Scalar(0));
|
|
}
|
|
else if (first >= firstPaddedRight && last < lastPaddedRight) {
|
|
// all the coefficient are in the padding zone.
|
|
return internal::pset1<PacketReturnType>(Scalar(0));
|
|
}
|
|
else if (first >= lastPaddedLeft && last < firstPaddedRight) {
|
|
// all the coefficient are between the 2 padding zones.
|
|
inputIndex += (index - m_padding[0].first);
|
|
return m_impl.template packet<Unaligned>(inputIndex);
|
|
}
|
|
// Every other case
|
|
return packetWithPossibleZero(initialIndex);
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetRowMajor(Index index) const
|
|
{
|
|
const int packetSize = internal::unpacket_traits<PacketReturnType>::size;
|
|
EIGEN_STATIC_ASSERT(packetSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
|
|
eigen_assert(index+packetSize-1 < dimensions().TotalSize());
|
|
|
|
const Index initialIndex = index;
|
|
Index inputIndex = 0;
|
|
|
|
for (int i = 0; i < NumDims - 1; ++i) {
|
|
const Index first = index;
|
|
const Index last = index + packetSize - 1;
|
|
const Index lastPaddedLeft = m_padding[i].first * m_outputStrides[i+1];
|
|
const Index firstPaddedRight = (m_dimensions[i] - m_padding[i].second) * m_outputStrides[i+1];
|
|
const Index lastPaddedRight = m_outputStrides[i];
|
|
|
|
if (last < lastPaddedLeft) {
|
|
// all the coefficient are in the padding zone.
|
|
return internal::pset1<PacketReturnType>(Scalar(0));
|
|
}
|
|
else if (first >= firstPaddedRight && last < lastPaddedRight) {
|
|
// all the coefficient are in the padding zone.
|
|
return internal::pset1<PacketReturnType>(Scalar(0));
|
|
}
|
|
else if (first >= lastPaddedLeft && last < firstPaddedRight) {
|
|
// all the coefficient are between the 2 padding zones.
|
|
const Index idx = index / m_outputStrides[i+1];
|
|
inputIndex += (idx - m_padding[i].first) * m_inputStrides[i];
|
|
index -= idx * m_outputStrides[i+1];
|
|
}
|
|
else {
|
|
// Every other case
|
|
return packetWithPossibleZero(initialIndex);
|
|
}
|
|
}
|
|
|
|
const Index last = index + packetSize - 1;
|
|
const Index first = index;
|
|
const Index lastPaddedLeft = m_padding[NumDims-1].first;
|
|
const Index firstPaddedRight = (m_dimensions[NumDims-1] - m_padding[NumDims-1].second);
|
|
const Index lastPaddedRight = m_outputStrides[NumDims-1];
|
|
|
|
if (last < lastPaddedLeft) {
|
|
// all the coefficient are in the padding zone.
|
|
return internal::pset1<PacketReturnType>(Scalar(0));
|
|
}
|
|
else if (first >= firstPaddedRight && last < lastPaddedRight) {
|
|
// all the coefficient are in the padding zone.
|
|
return internal::pset1<PacketReturnType>(Scalar(0));
|
|
}
|
|
else if (first >= lastPaddedLeft && last < firstPaddedRight) {
|
|
// all the coefficient are between the 2 padding zones.
|
|
inputIndex += (index - m_padding[NumDims-1].first);
|
|
return m_impl.template packet<Unaligned>(inputIndex);
|
|
}
|
|
// Every other case
|
|
return packetWithPossibleZero(initialIndex);
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetWithPossibleZero(Index index) const
|
|
{
|
|
const int packetSize = internal::unpacket_traits<PacketReturnType>::size;
|
|
EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[packetSize];
|
|
for (int i = 0; i < packetSize; ++i) {
|
|
values[i] = coeff(index+i);
|
|
}
|
|
PacketReturnType rslt = internal::pload<PacketReturnType>(values);
|
|
return rslt;
|
|
}
|
|
|
|
Dimensions m_dimensions;
|
|
array<Index, NumDims+1> m_outputStrides;
|
|
array<Index, NumDims> m_inputStrides;
|
|
TensorEvaluator<ArgType, Device> m_impl;
|
|
PaddingDimensions m_padding;
|
|
};
|
|
|
|
|
|
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_CXX11_TENSOR_TENSOR_PADDING_H
|