372 lines
14 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CXX11_TENSOR_TENSOR_PADDING_H
#define EIGEN_CXX11_TENSOR_TENSOR_PADDING_H
namespace Eigen {
/** \class TensorPadding
* \ingroup CXX11_Tensor_Module
*
* \brief Tensor padding class.
* At the moment only 0-padding is supported.
*
*/
namespace internal {
template<typename PaddingDimensions, typename XprType>
struct traits<TensorPaddingOp<PaddingDimensions, XprType> > : public traits<XprType>
{
typedef typename XprType::Scalar Scalar;
typedef traits<XprType> XprTraits;
typedef typename packet_traits<Scalar>::type Packet;
typedef typename XprTraits::StorageKind StorageKind;
typedef typename XprTraits::Index Index;
typedef typename XprType::Nested Nested;
typedef typename remove_reference<Nested>::type _Nested;
static const int NumDimensions = XprTraits::NumDimensions;
static const int Layout = XprTraits::Layout;
};
template<typename PaddingDimensions, typename XprType>
struct eval<TensorPaddingOp<PaddingDimensions, XprType>, Eigen::Dense>
{
typedef const TensorPaddingOp<PaddingDimensions, XprType>& type;
};
template<typename PaddingDimensions, typename XprType>
struct nested<TensorPaddingOp<PaddingDimensions, XprType>, 1, typename eval<TensorPaddingOp<PaddingDimensions, XprType> >::type>
{
typedef TensorPaddingOp<PaddingDimensions, XprType> type;
};
} // end namespace internal
template<typename PaddingDimensions, typename XprType>
class TensorPaddingOp : public TensorBase<TensorPaddingOp<PaddingDimensions, XprType>, ReadOnlyAccessors>
{
public:
typedef typename Eigen::internal::traits<TensorPaddingOp>::Scalar Scalar;
typedef typename Eigen::internal::traits<TensorPaddingOp>::Packet Packet;
typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename XprType::PacketReturnType PacketReturnType;
typedef typename Eigen::internal::nested<TensorPaddingOp>::type Nested;
typedef typename Eigen::internal::traits<TensorPaddingOp>::StorageKind StorageKind;
typedef typename Eigen::internal::traits<TensorPaddingOp>::Index Index;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorPaddingOp(const XprType& expr, const PaddingDimensions& padding_dims)
: m_xpr(expr), m_padding_dims(padding_dims) {}
EIGEN_DEVICE_FUNC
const PaddingDimensions& padding() const { return m_padding_dims; }
EIGEN_DEVICE_FUNC
const typename internal::remove_all<typename XprType::Nested>::type&
expression() const { return m_xpr; }
protected:
typename XprType::Nested m_xpr;
const PaddingDimensions m_padding_dims;
};
// Eval as rvalue
template<typename PaddingDimensions, typename ArgType, typename Device>
struct TensorEvaluator<const TensorPaddingOp<PaddingDimensions, ArgType>, Device>
{
typedef TensorPaddingOp<PaddingDimensions, ArgType> XprType;
typedef typename XprType::Index Index;
static const int NumDims = internal::array_size<PaddingDimensions>::value;
typedef DSizes<Index, NumDims> Dimensions;
enum {
IsAligned = false,
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
Layout = TensorEvaluator<ArgType, Device>::Layout,
CoordAccess = true,
RawAccess = false
};
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
: m_impl(op.expression(), device), m_padding(op.padding())
{
// The padding op doesn't change the rank of the tensor. Directly padding a scalar would lead
// to a vector, which doesn't make sense. Instead one should reshape the scalar into a vector
// of 1 element first and then pad.
EIGEN_STATIC_ASSERT(NumDims > 0, YOU_MADE_A_PROGRAMMING_MISTAKE);
// Compute dimensions
m_dimensions = m_impl.dimensions();
for (int i = 0; i < NumDims; ++i) {
m_dimensions[i] += m_padding[i].first + m_padding[i].second;
}
const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
m_inputStrides[0] = 1;
m_outputStrides[0] = 1;
for (int i = 1; i < NumDims; ++i) {
m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1];
m_outputStrides[i] = m_outputStrides[i-1] * m_dimensions[i-1];
}
m_outputStrides[NumDims] = m_outputStrides[NumDims-1] * m_dimensions[NumDims-1];
} else {
m_inputStrides[NumDims - 1] = 1;
m_outputStrides[NumDims] = 1;
for (int i = NumDims - 2; i >= 0; --i) {
m_inputStrides[i] = m_inputStrides[i+1] * input_dims[i+1];
m_outputStrides[i+1] = m_outputStrides[i+2] * m_dimensions[i+1];
}
m_outputStrides[0] = m_outputStrides[1] * m_dimensions[0];
}
}
typedef typename XprType::Scalar Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename XprType::PacketReturnType PacketReturnType;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar*) {
m_impl.evalSubExprsIfNeeded(NULL);
return true;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
m_impl.cleanup();
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
{
eigen_assert(index < dimensions().TotalSize());
Index inputIndex = 0;
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
for (int i = NumDims - 1; i > 0; --i) {
const Index idx = index / m_outputStrides[i];
if (idx < m_padding[i].first || idx >= m_dimensions[i] - m_padding[i].second) {
return Scalar(0);
}
inputIndex += (idx - m_padding[i].first) * m_inputStrides[i];
index -= idx * m_outputStrides[i];
}
if (index < m_padding[0].first || index >= m_dimensions[0] - m_padding[0].second) {
return Scalar(0);
}
inputIndex += (index - m_padding[0].first);
} else {
for (int i = 0; i < NumDims - 1; ++i) {
const Index idx = index / m_outputStrides[i+1];
if (idx < m_padding[i].first || idx >= m_dimensions[i] - m_padding[i].second) {
return Scalar(0);
}
inputIndex += (idx - m_padding[i].first) * m_inputStrides[i];
index -= idx * m_outputStrides[i+1];
}
if (index < m_padding[NumDims-1].first ||
index >= m_dimensions[NumDims-1] - m_padding[NumDims-1].second) {
return Scalar(0);
}
inputIndex += (index - m_padding[NumDims-1].first);
}
return m_impl.coeff(inputIndex);
}
template<int LoadMode>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
{
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
return packetColMajor(index);
}
return packetRowMajor(index);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(const array<Index, NumDims>& coords) const
{
Index inputIndex;
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
{
const Index idx = coords[0];
if (idx < m_padding[0].first || idx >= m_dimensions[0] - m_padding[0].second) {
return Scalar(0);
}
inputIndex = idx - m_padding[0].first;
}
for (int i = 1; i < NumDims; ++i) {
const Index idx = coords[i];
if (idx < m_padding[i].first || idx >= m_dimensions[i] - m_padding[i].second) {
return Scalar(0);
}
inputIndex += (idx - m_padding[i].first) * m_inputStrides[i];
}
} else {
{
const Index idx = coords[NumDims-1];
if (idx < m_padding[NumDims-1].first || idx >= m_dimensions[NumDims-1] - m_padding[NumDims-1].second) {
return Scalar(0);
}
inputIndex = idx - m_padding[NumDims-1].first;
}
for (int i = NumDims - 2; i >= 0; --i) {
const Index idx = coords[i];
if (idx < m_padding[i].first || idx >= m_dimensions[i] - m_padding[i].second) {
return Scalar(0);
}
inputIndex += (idx - m_padding[i].first) * m_inputStrides[i];
}
}
return m_impl.coeff(inputIndex);
}
EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
protected:
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetColMajor(Index index) const
{
const int packetSize = internal::unpacket_traits<PacketReturnType>::size;
EIGEN_STATIC_ASSERT(packetSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
eigen_assert(index+packetSize-1 < dimensions().TotalSize());
const Index initialIndex = index;
Index inputIndex = 0;
for (int i = NumDims - 1; i > 0; --i) {
const Index first = index;
const Index last = index + packetSize - 1;
const Index lastPaddedLeft = m_padding[i].first * m_outputStrides[i];
const Index firstPaddedRight = (m_dimensions[i] - m_padding[i].second) * m_outputStrides[i];
const Index lastPaddedRight = m_outputStrides[i+1];
if (last < lastPaddedLeft) {
// all the coefficient are in the padding zone.
return internal::pset1<PacketReturnType>(Scalar(0));
}
else if (first >= firstPaddedRight && last < lastPaddedRight) {
// all the coefficient are in the padding zone.
return internal::pset1<PacketReturnType>(Scalar(0));
}
else if (first >= lastPaddedLeft && last < firstPaddedRight) {
// all the coefficient are between the 2 padding zones.
const Index idx = index / m_outputStrides[i];
inputIndex += (idx - m_padding[i].first) * m_inputStrides[i];
index -= idx * m_outputStrides[i];
}
else {
// Every other case
return packetWithPossibleZero(initialIndex);
}
}
const Index last = index + packetSize - 1;
const Index first = index;
const Index lastPaddedLeft = m_padding[0].first;
const Index firstPaddedRight = (m_dimensions[0] - m_padding[0].second);
const Index lastPaddedRight = m_outputStrides[1];
if (last < lastPaddedLeft) {
// all the coefficient are in the padding zone.
return internal::pset1<PacketReturnType>(Scalar(0));
}
else if (first >= firstPaddedRight && last < lastPaddedRight) {
// all the coefficient are in the padding zone.
return internal::pset1<PacketReturnType>(Scalar(0));
}
else if (first >= lastPaddedLeft && last < firstPaddedRight) {
// all the coefficient are between the 2 padding zones.
inputIndex += (index - m_padding[0].first);
return m_impl.template packet<Unaligned>(inputIndex);
}
// Every other case
return packetWithPossibleZero(initialIndex);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetRowMajor(Index index) const
{
const int packetSize = internal::unpacket_traits<PacketReturnType>::size;
EIGEN_STATIC_ASSERT(packetSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
eigen_assert(index+packetSize-1 < dimensions().TotalSize());
const Index initialIndex = index;
Index inputIndex = 0;
for (int i = 0; i < NumDims - 1; ++i) {
const Index first = index;
const Index last = index + packetSize - 1;
const Index lastPaddedLeft = m_padding[i].first * m_outputStrides[i+1];
const Index firstPaddedRight = (m_dimensions[i] - m_padding[i].second) * m_outputStrides[i+1];
const Index lastPaddedRight = m_outputStrides[i];
if (last < lastPaddedLeft) {
// all the coefficient are in the padding zone.
return internal::pset1<PacketReturnType>(Scalar(0));
}
else if (first >= firstPaddedRight && last < lastPaddedRight) {
// all the coefficient are in the padding zone.
return internal::pset1<PacketReturnType>(Scalar(0));
}
else if (first >= lastPaddedLeft && last < firstPaddedRight) {
// all the coefficient are between the 2 padding zones.
const Index idx = index / m_outputStrides[i+1];
inputIndex += (idx - m_padding[i].first) * m_inputStrides[i];
index -= idx * m_outputStrides[i+1];
}
else {
// Every other case
return packetWithPossibleZero(initialIndex);
}
}
const Index last = index + packetSize - 1;
const Index first = index;
const Index lastPaddedLeft = m_padding[NumDims-1].first;
const Index firstPaddedRight = (m_dimensions[NumDims-1] - m_padding[NumDims-1].second);
const Index lastPaddedRight = m_outputStrides[NumDims-1];
if (last < lastPaddedLeft) {
// all the coefficient are in the padding zone.
return internal::pset1<PacketReturnType>(Scalar(0));
}
else if (first >= firstPaddedRight && last < lastPaddedRight) {
// all the coefficient are in the padding zone.
return internal::pset1<PacketReturnType>(Scalar(0));
}
else if (first >= lastPaddedLeft && last < firstPaddedRight) {
// all the coefficient are between the 2 padding zones.
inputIndex += (index - m_padding[NumDims-1].first);
return m_impl.template packet<Unaligned>(inputIndex);
}
// Every other case
return packetWithPossibleZero(initialIndex);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetWithPossibleZero(Index index) const
{
const int packetSize = internal::unpacket_traits<PacketReturnType>::size;
EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[packetSize];
for (int i = 0; i < packetSize; ++i) {
values[i] = coeff(index+i);
}
PacketReturnType rslt = internal::pload<PacketReturnType>(values);
return rslt;
}
Dimensions m_dimensions;
array<Index, NumDims+1> m_outputStrides;
array<Index, NumDims> m_inputStrides;
TensorEvaluator<ArgType, Device> m_impl;
PaddingDimensions m_padding;
};
} // end namespace Eigen
#endif // EIGEN_CXX11_TENSOR_TENSOR_PADDING_H