mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-19 16:19:37 +08:00

* try to be clever in matrix ctors and operator=: be lazy when we can, always allow to copy rowvector into columnvector, check the template parameters, try to factor the code better * add missing copy ctor in UnalignedType * fix bug in the traits of DiagonalProduct * renaming: EIGEN_TUNE_FOR_CPU_CACHE_SIZE * update the dox a little
203 lines
6.8 KiB
C++
203 lines
6.8 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra. Eigen itself is part of the KDE project.
|
|
//
|
|
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#ifndef EIGEN_TRANSPOSE_H
|
|
#define EIGEN_TRANSPOSE_H
|
|
|
|
/** \class Transpose
|
|
*
|
|
* \brief Expression of the transpose of a matrix
|
|
*
|
|
* \param MatrixType the type of the object of which we are taking the transpose
|
|
*
|
|
* This class represents an expression of the transpose of a matrix.
|
|
* It is the return type of MatrixBase::transpose() and MatrixBase::adjoint()
|
|
* and most of the time this is the only way it is used.
|
|
*
|
|
* \sa MatrixBase::transpose(), MatrixBase::adjoint()
|
|
*/
|
|
template<typename MatrixType>
|
|
struct ei_traits<Transpose<MatrixType> >
|
|
{
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename ei_nested<MatrixType>::type MatrixTypeNested;
|
|
typedef typename ei_unref<MatrixTypeNested>::type _MatrixTypeNested;
|
|
enum {
|
|
RowsAtCompileTime = MatrixType::ColsAtCompileTime,
|
|
ColsAtCompileTime = MatrixType::RowsAtCompileTime,
|
|
MaxRowsAtCompileTime = MatrixType::MaxColsAtCompileTime,
|
|
MaxColsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
|
Flags = ((int(_MatrixTypeNested::Flags) ^ RowMajorBit)
|
|
& ~(LowerTriangularBit | UpperTriangularBit))
|
|
| (int(_MatrixTypeNested::Flags)&UpperTriangularBit ? LowerTriangularBit : 0)
|
|
| (int(_MatrixTypeNested::Flags)&LowerTriangularBit ? UpperTriangularBit : 0),
|
|
CoeffReadCost = _MatrixTypeNested::CoeffReadCost
|
|
};
|
|
};
|
|
|
|
template<typename MatrixType> class Transpose
|
|
: public MatrixBase<Transpose<MatrixType> >
|
|
{
|
|
public:
|
|
|
|
EIGEN_GENERIC_PUBLIC_INTERFACE(Transpose)
|
|
|
|
inline Transpose(const MatrixType& matrix) : m_matrix(matrix) {}
|
|
|
|
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Transpose)
|
|
|
|
inline int rows() const { return m_matrix.cols(); }
|
|
inline int cols() const { return m_matrix.rows(); }
|
|
inline int nonZeros() const { return m_matrix.nonZeros(); }
|
|
inline int stride(void) const { return m_matrix.stride(); }
|
|
|
|
inline Scalar& coeffRef(int row, int col)
|
|
{
|
|
return m_matrix.const_cast_derived().coeffRef(col, row);
|
|
}
|
|
|
|
inline const Scalar coeff(int row, int col) const
|
|
{
|
|
return m_matrix.coeff(col, row);
|
|
}
|
|
|
|
inline const Scalar coeff(int index) const
|
|
{
|
|
return m_matrix.coeff(index);
|
|
}
|
|
|
|
inline Scalar& coeffRef(int index)
|
|
{
|
|
return m_matrix.const_cast_derived().coeffRef(index);
|
|
}
|
|
|
|
template<int LoadMode>
|
|
inline const PacketScalar packet(int row, int col) const
|
|
{
|
|
return m_matrix.template packet<LoadMode>(col, row);
|
|
}
|
|
|
|
template<int LoadMode>
|
|
inline void writePacket(int row, int col, const PacketScalar& x)
|
|
{
|
|
m_matrix.const_cast_derived().template writePacket<LoadMode>(col, row, x);
|
|
}
|
|
|
|
template<int LoadMode>
|
|
inline const PacketScalar packet(int index) const
|
|
{
|
|
return m_matrix.template packet<LoadMode>(index);
|
|
}
|
|
|
|
template<int LoadMode>
|
|
inline void writePacket(int index, const PacketScalar& x)
|
|
{
|
|
m_matrix.const_cast_derived().template writePacket<LoadMode>(index, x);
|
|
}
|
|
|
|
protected:
|
|
const typename MatrixType::Nested m_matrix;
|
|
};
|
|
|
|
/** \returns an expression of the transpose of *this.
|
|
*
|
|
* Example: \include MatrixBase_transpose.cpp
|
|
* Output: \verbinclude MatrixBase_transpose.out
|
|
*
|
|
* \sa adjoint(), class DiagonalCoeffs */
|
|
template<typename Derived>
|
|
inline Transpose<Derived>
|
|
MatrixBase<Derived>::transpose()
|
|
{
|
|
return derived();
|
|
}
|
|
|
|
/** This is the const version of transpose(). \sa adjoint() */
|
|
template<typename Derived>
|
|
inline const Transpose<Derived>
|
|
MatrixBase<Derived>::transpose() const
|
|
{
|
|
return derived();
|
|
}
|
|
|
|
/** \returns an expression of the adjoint (i.e. conjugate transpose) of *this.
|
|
*
|
|
* Example: \include MatrixBase_adjoint.cpp
|
|
* Output: \verbinclude MatrixBase_adjoint.out
|
|
*
|
|
* \sa transpose(), conjugate(), class Transpose, class ei_scalar_conjugate_op */
|
|
template<typename Derived>
|
|
inline const typename MatrixBase<Derived>::AdjointReturnType
|
|
MatrixBase<Derived>::adjoint() const
|
|
{
|
|
return conjugate().nestByValue();
|
|
}
|
|
|
|
/***************************************************************************
|
|
* "in place" transpose implementation
|
|
***************************************************************************/
|
|
|
|
template<typename MatrixType,
|
|
bool IsSquare = (MatrixType::RowsAtCompileTime == MatrixType::ColsAtCompileTime) && MatrixType::RowsAtCompileTime!=Dynamic>
|
|
struct ei_inplace_transpose_selector;
|
|
|
|
template<typename MatrixType>
|
|
struct ei_inplace_transpose_selector<MatrixType,true> { // square matrix
|
|
static void run(MatrixType& m) {
|
|
m.template part<StrictlyUpperTriangular>().swap(m.transpose());
|
|
}
|
|
};
|
|
|
|
template<typename MatrixType>
|
|
struct ei_inplace_transpose_selector<MatrixType,false> { // non square matrix
|
|
static void run(MatrixType& m) {
|
|
if (m.rows()==m.cols())
|
|
m.template part<StrictlyUpperTriangular>().swap(m.transpose());
|
|
else
|
|
m = m.transpose().eval();
|
|
}
|
|
};
|
|
|
|
/** This is the "in place" version of transpose: it transposes \c *this.
|
|
*
|
|
* In most cases it is probably better to simply use the transposed expression
|
|
* of a matrix. However, when transposing the matrix data itself is really needed,
|
|
* then this "in-place" version is probably the right choice because it provides
|
|
* the following additional features:
|
|
* - less error prone: doing the same operation with .transpose() requires special care:
|
|
* \code m = m.transpose().eval(); \endcode
|
|
* - no temporary object is created (currently only for squared matrices)
|
|
* - it allows future optimizations (cache friendliness, etc.)
|
|
*
|
|
* \note if the matrix is not square, then \c *this must be a resizable matrix.
|
|
*
|
|
* \sa transpose(), adjoint() */
|
|
template<typename Derived>
|
|
inline void MatrixBase<Derived>::transposeInPlace()
|
|
{
|
|
ei_inplace_transpose_selector<Derived>::run(derived());
|
|
}
|
|
|
|
#endif // EIGEN_TRANSPOSE_H
|