mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-30 15:54:13 +08:00
396 lines
13 KiB
C++
396 lines
13 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_ITERATIVE_SOLVER_BASE_H
|
|
#define EIGEN_ITERATIVE_SOLVER_BASE_H
|
|
|
|
// IWYU pragma: private
|
|
#include "./InternalHeaderCheck.h"
|
|
|
|
namespace Eigen {
|
|
|
|
namespace internal {
|
|
|
|
template <typename MatrixType>
|
|
struct is_ref_compatible_impl {
|
|
private:
|
|
template <typename T0>
|
|
struct any_conversion {
|
|
template <typename T>
|
|
any_conversion(const volatile T&);
|
|
template <typename T>
|
|
any_conversion(T&);
|
|
};
|
|
struct yes {
|
|
int a[1];
|
|
};
|
|
struct no {
|
|
int a[2];
|
|
};
|
|
|
|
template <typename T>
|
|
static yes test(const Ref<const T>&, int);
|
|
template <typename T>
|
|
static no test(any_conversion<T>, ...);
|
|
|
|
public:
|
|
static MatrixType ms_from;
|
|
enum { value = sizeof(test<MatrixType>(ms_from, 0)) == sizeof(yes) };
|
|
};
|
|
|
|
template <typename MatrixType>
|
|
struct is_ref_compatible {
|
|
enum { value = is_ref_compatible_impl<remove_all_t<MatrixType>>::value };
|
|
};
|
|
|
|
template <typename MatrixType, bool MatrixFree = !internal::is_ref_compatible<MatrixType>::value>
|
|
class generic_matrix_wrapper;
|
|
|
|
// We have an explicit matrix at hand, compatible with Ref<>
|
|
template <typename MatrixType>
|
|
class generic_matrix_wrapper<MatrixType, false> {
|
|
public:
|
|
typedef Ref<const MatrixType> ActualMatrixType;
|
|
template <int UpLo>
|
|
struct ConstSelfAdjointViewReturnType {
|
|
typedef typename ActualMatrixType::template ConstSelfAdjointViewReturnType<UpLo>::Type Type;
|
|
};
|
|
|
|
enum { MatrixFree = false };
|
|
|
|
generic_matrix_wrapper() : m_dummy(0, 0), m_matrix(m_dummy) {}
|
|
|
|
template <typename InputType>
|
|
generic_matrix_wrapper(const InputType& mat) : m_matrix(mat) {}
|
|
|
|
const ActualMatrixType& matrix() const { return m_matrix; }
|
|
|
|
template <typename MatrixDerived>
|
|
void grab(const EigenBase<MatrixDerived>& mat) {
|
|
internal::destroy_at(&m_matrix);
|
|
internal::construct_at(&m_matrix, mat.derived());
|
|
}
|
|
|
|
void grab(const Ref<const MatrixType>& mat) {
|
|
if (&(mat.derived()) != &m_matrix) {
|
|
internal::destroy_at(&m_matrix);
|
|
internal::construct_at(&m_matrix, mat);
|
|
}
|
|
}
|
|
|
|
protected:
|
|
MatrixType m_dummy; // used to default initialize the Ref<> object
|
|
ActualMatrixType m_matrix;
|
|
};
|
|
|
|
// MatrixType is not compatible with Ref<> -> matrix-free wrapper
|
|
template <typename MatrixType>
|
|
class generic_matrix_wrapper<MatrixType, true> {
|
|
public:
|
|
typedef MatrixType ActualMatrixType;
|
|
template <int UpLo>
|
|
struct ConstSelfAdjointViewReturnType {
|
|
typedef ActualMatrixType Type;
|
|
};
|
|
|
|
enum { MatrixFree = true };
|
|
|
|
generic_matrix_wrapper() : mp_matrix(0) {}
|
|
|
|
generic_matrix_wrapper(const MatrixType& mat) : mp_matrix(&mat) {}
|
|
|
|
const ActualMatrixType& matrix() const { return *mp_matrix; }
|
|
|
|
void grab(const MatrixType& mat) { mp_matrix = &mat; }
|
|
|
|
protected:
|
|
const ActualMatrixType* mp_matrix;
|
|
};
|
|
|
|
} // namespace internal
|
|
|
|
/** \ingroup IterativeLinearSolvers_Module
|
|
* \brief Base class for linear iterative solvers
|
|
*
|
|
* \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
|
|
*/
|
|
template <typename Derived>
|
|
class IterativeSolverBase : public SparseSolverBase<Derived> {
|
|
protected:
|
|
typedef SparseSolverBase<Derived> Base;
|
|
using Base::m_isInitialized;
|
|
|
|
public:
|
|
typedef typename internal::traits<Derived>::MatrixType MatrixType;
|
|
typedef typename internal::traits<Derived>::Preconditioner Preconditioner;
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename MatrixType::StorageIndex StorageIndex;
|
|
typedef typename MatrixType::RealScalar RealScalar;
|
|
|
|
enum { ColsAtCompileTime = MatrixType::ColsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime };
|
|
|
|
public:
|
|
using Base::derived;
|
|
|
|
/** Default constructor. */
|
|
IterativeSolverBase() { init(); }
|
|
|
|
/** Initialize the solver with matrix \a A for further \c Ax=b solving.
|
|
*
|
|
* This constructor is a shortcut for the default constructor followed
|
|
* by a call to compute().
|
|
*
|
|
* \warning this class stores a reference to the matrix A as well as some
|
|
* precomputed values that depend on it. Therefore, if \a A is changed
|
|
* this class becomes invalid. Call compute() to update it with the new
|
|
* matrix A, or modify a copy of A.
|
|
*/
|
|
template <typename MatrixDerived>
|
|
explicit IterativeSolverBase(const EigenBase<MatrixDerived>& A) : m_matrixWrapper(A.derived()) {
|
|
init();
|
|
compute(matrix());
|
|
}
|
|
|
|
IterativeSolverBase(IterativeSolverBase&&) = default;
|
|
|
|
~IterativeSolverBase() {}
|
|
|
|
/** Initializes the iterative solver for the sparsity pattern of the matrix \a A for further solving \c Ax=b problems.
|
|
*
|
|
* Currently, this function mostly calls analyzePattern on the preconditioner. In the future
|
|
* we might, for instance, implement column reordering for faster matrix vector products.
|
|
*/
|
|
template <typename MatrixDerived>
|
|
Derived& analyzePattern(const EigenBase<MatrixDerived>& A) {
|
|
grab(A.derived());
|
|
m_preconditioner.analyzePattern(matrix());
|
|
m_isInitialized = true;
|
|
m_analysisIsOk = true;
|
|
m_info = m_preconditioner.info();
|
|
return derived();
|
|
}
|
|
|
|
/** Initializes the iterative solver with the numerical values of the matrix \a A for further solving \c Ax=b
|
|
* problems.
|
|
*
|
|
* Currently, this function mostly calls factorize on the preconditioner.
|
|
*
|
|
* \warning this class stores a reference to the matrix A as well as some
|
|
* precomputed values that depend on it. Therefore, if \a A is changed
|
|
* this class becomes invalid. Call compute() to update it with the new
|
|
* matrix A, or modify a copy of A.
|
|
*/
|
|
template <typename MatrixDerived>
|
|
Derived& factorize(const EigenBase<MatrixDerived>& A) {
|
|
eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
|
|
grab(A.derived());
|
|
m_preconditioner.factorize(matrix());
|
|
m_factorizationIsOk = true;
|
|
m_info = m_preconditioner.info();
|
|
return derived();
|
|
}
|
|
|
|
/** Initializes the iterative solver with the matrix \a A for further solving \c Ax=b problems.
|
|
*
|
|
* Currently, this function mostly initializes/computes the preconditioner. In the future
|
|
* we might, for instance, implement column reordering for faster matrix vector products.
|
|
*
|
|
* \warning this class stores a reference to the matrix A as well as some
|
|
* precomputed values that depend on it. Therefore, if \a A is changed
|
|
* this class becomes invalid. Call compute() to update it with the new
|
|
* matrix A, or modify a copy of A.
|
|
*/
|
|
template <typename MatrixDerived>
|
|
Derived& compute(const EigenBase<MatrixDerived>& A) {
|
|
grab(A.derived());
|
|
m_preconditioner.compute(matrix());
|
|
m_isInitialized = true;
|
|
m_analysisIsOk = true;
|
|
m_factorizationIsOk = true;
|
|
m_info = m_preconditioner.info();
|
|
return derived();
|
|
}
|
|
|
|
/** \internal */
|
|
constexpr Index rows() const noexcept { return matrix().rows(); }
|
|
|
|
/** \internal */
|
|
constexpr Index cols() const noexcept { return matrix().cols(); }
|
|
|
|
/** \returns the tolerance threshold used by the stopping criteria.
|
|
* \sa setTolerance()
|
|
*/
|
|
RealScalar tolerance() const { return m_tolerance; }
|
|
|
|
/** Sets the tolerance threshold used by the stopping criteria.
|
|
*
|
|
* This value is used as an upper bound to the relative residual error: |Ax-b|/|b|.
|
|
* The default value is the machine precision given by NumTraits<Scalar>::epsilon()
|
|
*/
|
|
Derived& setTolerance(const RealScalar& tolerance) {
|
|
m_tolerance = tolerance;
|
|
return derived();
|
|
}
|
|
|
|
/** \returns a read-write reference to the preconditioner for custom configuration. */
|
|
Preconditioner& preconditioner() { return m_preconditioner; }
|
|
|
|
/** \returns a read-only reference to the preconditioner. */
|
|
const Preconditioner& preconditioner() const { return m_preconditioner; }
|
|
|
|
/** \returns the max number of iterations.
|
|
* It is either the value set by setMaxIterations or, by default,
|
|
* twice the number of columns of the matrix.
|
|
*/
|
|
Index maxIterations() const { return (m_maxIterations < 0) ? 2 * matrix().cols() : m_maxIterations; }
|
|
|
|
/** Sets the max number of iterations.
|
|
* Default is twice the number of columns of the matrix.
|
|
*/
|
|
Derived& setMaxIterations(Index maxIters) {
|
|
m_maxIterations = maxIters;
|
|
return derived();
|
|
}
|
|
|
|
/** \returns the number of iterations performed during the last solve */
|
|
Index iterations() const {
|
|
eigen_assert(m_isInitialized && "IterativeSolverBase is not initialized.");
|
|
return m_iterations;
|
|
}
|
|
|
|
/** \returns the tolerance error reached during the last solve.
|
|
* It is a close approximation of the true relative residual error |Ax-b|/|b|.
|
|
*/
|
|
RealScalar error() const {
|
|
eigen_assert(m_isInitialized && "IterativeSolverBase is not initialized.");
|
|
return m_error;
|
|
}
|
|
|
|
/** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
|
|
* and \a x0 as an initial solution.
|
|
*
|
|
* \sa solve(), compute()
|
|
*/
|
|
template <typename Rhs, typename Guess>
|
|
inline const SolveWithGuess<Derived, Rhs, Guess> solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const {
|
|
eigen_assert(m_isInitialized && "Solver is not initialized.");
|
|
eigen_assert(derived().rows() == b.rows() && "solve(): invalid number of rows of the right hand side matrix b");
|
|
return SolveWithGuess<Derived, Rhs, Guess>(derived(), b.derived(), x0);
|
|
}
|
|
|
|
/** \returns Success if the iterations converged, and NoConvergence otherwise. */
|
|
ComputationInfo info() const {
|
|
eigen_assert(m_isInitialized && "IterativeSolverBase is not initialized.");
|
|
return m_info;
|
|
}
|
|
|
|
/** \internal */
|
|
template <typename Rhs, typename DestDerived>
|
|
void _solve_with_guess_impl(const Rhs& b, SparseMatrixBase<DestDerived>& aDest) const {
|
|
eigen_assert(rows() == b.rows());
|
|
|
|
Index rhsCols = b.cols();
|
|
Index size = b.rows();
|
|
DestDerived& dest(aDest.derived());
|
|
typedef typename DestDerived::Scalar DestScalar;
|
|
Eigen::Matrix<DestScalar, Dynamic, 1> tb(size);
|
|
Eigen::Matrix<DestScalar, Dynamic, 1> tx(cols());
|
|
// We do not directly fill dest because sparse expressions have to be free of aliasing issue.
|
|
// For non square least-square problems, b and dest might not have the same size whereas they might alias
|
|
// each-other.
|
|
typename DestDerived::PlainObject tmp(cols(), rhsCols);
|
|
ComputationInfo global_info = Success;
|
|
for (Index k = 0; k < rhsCols; ++k) {
|
|
tb = b.col(k);
|
|
tx = dest.col(k);
|
|
derived()._solve_vector_with_guess_impl(tb, tx);
|
|
tmp.col(k) = tx.sparseView(0);
|
|
|
|
// The call to _solve_vector_with_guess_impl updates m_info, so if it failed for a previous column
|
|
// we need to restore it to the worst value.
|
|
if (m_info == NumericalIssue)
|
|
global_info = NumericalIssue;
|
|
else if (m_info == NoConvergence)
|
|
global_info = NoConvergence;
|
|
}
|
|
m_info = global_info;
|
|
dest.swap(tmp);
|
|
}
|
|
|
|
template <typename Rhs, typename DestDerived>
|
|
std::enable_if_t<Rhs::ColsAtCompileTime != 1 && DestDerived::ColsAtCompileTime != 1> _solve_with_guess_impl(
|
|
const Rhs& b, MatrixBase<DestDerived>& aDest) const {
|
|
eigen_assert(rows() == b.rows());
|
|
|
|
Index rhsCols = b.cols();
|
|
DestDerived& dest(aDest.derived());
|
|
ComputationInfo global_info = Success;
|
|
for (Index k = 0; k < rhsCols; ++k) {
|
|
typename DestDerived::ColXpr xk(dest, k);
|
|
typename Rhs::ConstColXpr bk(b, k);
|
|
derived()._solve_vector_with_guess_impl(bk, xk);
|
|
|
|
// The call to _solve_vector_with_guess updates m_info, so if it failed for a previous column
|
|
// we need to restore it to the worst value.
|
|
if (m_info == NumericalIssue)
|
|
global_info = NumericalIssue;
|
|
else if (m_info == NoConvergence)
|
|
global_info = NoConvergence;
|
|
}
|
|
m_info = global_info;
|
|
}
|
|
|
|
template <typename Rhs, typename DestDerived>
|
|
std::enable_if_t<Rhs::ColsAtCompileTime == 1 || DestDerived::ColsAtCompileTime == 1> _solve_with_guess_impl(
|
|
const Rhs& b, MatrixBase<DestDerived>& dest) const {
|
|
derived()._solve_vector_with_guess_impl(b, dest.derived());
|
|
}
|
|
|
|
/** \internal default initial guess = 0 */
|
|
template <typename Rhs, typename Dest>
|
|
void _solve_impl(const Rhs& b, Dest& x) const {
|
|
x.setZero();
|
|
derived()._solve_with_guess_impl(b, x);
|
|
}
|
|
|
|
protected:
|
|
void init() {
|
|
m_isInitialized = false;
|
|
m_analysisIsOk = false;
|
|
m_factorizationIsOk = false;
|
|
m_maxIterations = -1;
|
|
m_tolerance = NumTraits<Scalar>::epsilon();
|
|
}
|
|
|
|
typedef internal::generic_matrix_wrapper<MatrixType> MatrixWrapper;
|
|
typedef typename MatrixWrapper::ActualMatrixType ActualMatrixType;
|
|
|
|
const ActualMatrixType& matrix() const { return m_matrixWrapper.matrix(); }
|
|
|
|
template <typename InputType>
|
|
void grab(const InputType& A) {
|
|
m_matrixWrapper.grab(A);
|
|
}
|
|
|
|
MatrixWrapper m_matrixWrapper;
|
|
Preconditioner m_preconditioner;
|
|
|
|
Index m_maxIterations;
|
|
RealScalar m_tolerance;
|
|
|
|
mutable RealScalar m_error;
|
|
mutable Index m_iterations;
|
|
mutable ComputationInfo m_info;
|
|
mutable bool m_analysisIsOk, m_factorizationIsOk;
|
|
};
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_ITERATIVE_SOLVER_BASE_H
|