mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-05-25 23:56:56 +08:00
298 lines
13 KiB
C++
298 lines
13 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#ifndef EIGEN_SOLVETRIANGULAR_H
|
|
#define EIGEN_SOLVETRIANGULAR_H
|
|
|
|
template<typename XprType> struct ei_is_part { enum {value=false}; };
|
|
template<typename XprType, unsigned int Mode> struct ei_is_part<Part<XprType,Mode> > { enum {value=true}; };
|
|
|
|
template<typename Lhs, typename Rhs,
|
|
int TriangularPart = (int(Lhs::Flags) & LowerTriangularBit)
|
|
? LowerTriangular
|
|
: (int(Lhs::Flags) & UpperTriangularBit)
|
|
? UpperTriangular
|
|
: 0xffffff,
|
|
int StorageOrder = ei_is_part<Lhs>::value ? 0xffffff // this is to solve ambiguous specializations
|
|
: int(Lhs::Flags) & (RowMajorBit|SparseBit)
|
|
>
|
|
struct ei_solve_triangular_selector;
|
|
|
|
// transform a Part xpr to a Flagged xpr
|
|
template<typename Lhs, unsigned int LhsMode, typename Rhs, int UpLo, int StorageOrder>
|
|
struct ei_solve_triangular_selector<Part<Lhs,LhsMode>,Rhs,UpLo,StorageOrder>
|
|
{
|
|
static void run(const Part<Lhs,LhsMode>& lhs, Rhs& other)
|
|
{
|
|
ei_solve_triangular_selector<Flagged<Lhs,LhsMode,0>,Rhs>::run(lhs._expression(), other);
|
|
}
|
|
};
|
|
|
|
// forward substitution, row-major
|
|
template<typename Lhs, typename Rhs, int UpLo>
|
|
struct ei_solve_triangular_selector<Lhs,Rhs,UpLo,RowMajor|IsDense>
|
|
{
|
|
typedef typename Rhs::Scalar Scalar;
|
|
static void run(const Lhs& lhs, Rhs& other)
|
|
{
|
|
const bool IsLowerTriangular = (UpLo==LowerTriangular);
|
|
const int size = lhs.cols();
|
|
/* We perform the inverse product per block of 4 rows such that we perfectly match
|
|
* our optimized matrix * vector product. blockyStart represents the number of rows
|
|
* we have process first using the non-block version.
|
|
*/
|
|
int blockyStart = (std::max(size-5,0)/4)*4;
|
|
if (IsLowerTriangular)
|
|
blockyStart = size - blockyStart;
|
|
else
|
|
blockyStart -= 1;
|
|
for(int c=0 ; c<other.cols() ; ++c)
|
|
{
|
|
// process first rows using the non block version
|
|
if(!(Lhs::Flags & UnitDiagBit))
|
|
{
|
|
if (IsLowerTriangular)
|
|
other.coeffRef(0,c) = other.coeff(0,c)/lhs.coeff(0, 0);
|
|
else
|
|
other.coeffRef(size-1,c) = other.coeff(size-1, c)/lhs.coeff(size-1, size-1);
|
|
}
|
|
for(int i=(IsLowerTriangular ? 1 : size-2); IsLowerTriangular ? i<blockyStart : i>blockyStart; i += (IsLowerTriangular ? 1 : -1) )
|
|
{
|
|
Scalar tmp = other.coeff(i,c)
|
|
- (IsLowerTriangular ? ((lhs.row(i).start(i)) * other.col(c).start(i)).coeff(0,0)
|
|
: ((lhs.row(i).end(size-i-1)) * other.col(c).end(size-i-1)).coeff(0,0));
|
|
if (Lhs::Flags & UnitDiagBit)
|
|
other.coeffRef(i,c) = tmp;
|
|
else
|
|
other.coeffRef(i,c) = tmp/lhs.coeff(i,i);
|
|
}
|
|
|
|
// now let's process the remaining rows 4 at once
|
|
for(int i=blockyStart; IsLowerTriangular ? i<size : i>0; )
|
|
{
|
|
int startBlock = i;
|
|
int endBlock = startBlock + (IsLowerTriangular ? 4 : -4);
|
|
|
|
/* Process the i cols times 4 rows block, and keep the result in a temporary vector */
|
|
// FIXME use fixed size block but take care to small fixed size matrices...
|
|
Matrix<Scalar,Dynamic,1> btmp(4);
|
|
if (IsLowerTriangular)
|
|
btmp = lhs.block(startBlock,0,4,i) * other.col(c).start(i);
|
|
else
|
|
btmp = lhs.block(i-3,i+1,4,size-1-i) * other.col(c).end(size-1-i);
|
|
|
|
/* Let's process the 4x4 sub-matrix as usual.
|
|
* btmp stores the diagonal coefficients used to update the remaining part of the result.
|
|
*/
|
|
{
|
|
Scalar tmp = other.coeff(startBlock,c)-btmp.coeff(IsLowerTriangular?0:3);
|
|
if (Lhs::Flags & UnitDiagBit)
|
|
other.coeffRef(i,c) = tmp;
|
|
else
|
|
other.coeffRef(i,c) = tmp/lhs.coeff(i,i);
|
|
}
|
|
|
|
i += IsLowerTriangular ? 1 : -1;
|
|
for (;IsLowerTriangular ? i<endBlock : i>endBlock; i += IsLowerTriangular ? 1 : -1)
|
|
{
|
|
int remainingSize = IsLowerTriangular ? i-startBlock : startBlock-i;
|
|
Scalar tmp = other.coeff(i,c)
|
|
- btmp.coeff(IsLowerTriangular ? remainingSize : 3-remainingSize)
|
|
- ( lhs.row(i).segment(IsLowerTriangular ? startBlock : i+1, remainingSize)
|
|
* other.col(c).segment(IsLowerTriangular ? startBlock : i+1, remainingSize)).coeff(0,0);
|
|
|
|
if (Lhs::Flags & UnitDiagBit)
|
|
other.coeffRef(i,c) = tmp;
|
|
else
|
|
other.coeffRef(i,c) = tmp/lhs.coeff(i,i);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
// Implements the following configurations:
|
|
// - inv(LowerTriangular, ColMajor) * Column vector
|
|
// - inv(LowerTriangular,UnitDiag,ColMajor) * Column vector
|
|
// - inv(UpperTriangular, ColMajor) * Column vector
|
|
// - inv(UpperTriangular,UnitDiag,ColMajor) * Column vector
|
|
template<typename Lhs, typename Rhs, int UpLo>
|
|
struct ei_solve_triangular_selector<Lhs,Rhs,UpLo,ColMajor|IsDense>
|
|
{
|
|
typedef typename Rhs::Scalar Scalar;
|
|
typedef typename ei_packet_traits<Scalar>::type Packet;
|
|
enum { PacketSize = ei_packet_traits<Scalar>::size };
|
|
|
|
static void run(const Lhs& lhs, Rhs& other)
|
|
{
|
|
static const bool IsLowerTriangular = (UpLo==LowerTriangular);
|
|
const int size = lhs.cols();
|
|
for(int c=0 ; c<other.cols() ; ++c)
|
|
{
|
|
/* let's perform the inverse product per block of 4 columns such that we perfectly match
|
|
* our optimized matrix * vector product. blockyEnd represents the number of rows
|
|
* we can process using the block version.
|
|
*/
|
|
int blockyEnd = (std::max(size-5,0)/4)*4;
|
|
if (!IsLowerTriangular)
|
|
blockyEnd = size-1 - blockyEnd;
|
|
for(int i=IsLowerTriangular ? 0 : size-1; IsLowerTriangular ? i<blockyEnd : i>blockyEnd;)
|
|
{
|
|
/* Let's process the 4x4 sub-matrix as usual.
|
|
* btmp stores the diagonal coefficients used to update the remaining part of the result.
|
|
*/
|
|
int startBlock = i;
|
|
int endBlock = startBlock + (IsLowerTriangular ? 4 : -4);
|
|
Matrix<Scalar,4,1> btmp;
|
|
for (;IsLowerTriangular ? i<endBlock : i>endBlock;
|
|
i += IsLowerTriangular ? 1 : -1)
|
|
{
|
|
if(!(Lhs::Flags & UnitDiagBit))
|
|
other.coeffRef(i,c) /= lhs.coeff(i,i);
|
|
int remainingSize = IsLowerTriangular ? endBlock-i-1 : i-endBlock-1;
|
|
if (remainingSize>0)
|
|
other.col(c).segment((IsLowerTriangular ? i : endBlock) + 1, remainingSize) -=
|
|
other.coeffRef(i,c)
|
|
* Block<Lhs,Dynamic,1>(lhs, (IsLowerTriangular ? i : endBlock) + 1, i, remainingSize, 1);
|
|
btmp.coeffRef(IsLowerTriangular ? i-startBlock : remainingSize) = -other.coeffRef(i,c);
|
|
}
|
|
|
|
/* Now we can efficiently update the remaining part of the result as a matrix * vector product.
|
|
* NOTE in order to reduce both compilation time and binary size, let's directly call
|
|
* the fast product implementation. It is equivalent to the following code:
|
|
* other.col(c).end(size-endBlock) += (lhs.block(endBlock, startBlock, size-endBlock, endBlock-startBlock)
|
|
* * other.col(c).block(startBlock,endBlock-startBlock)).lazy();
|
|
*/
|
|
// FIXME this is cool but what about conjugate/adjoint expressions ? do we want to evaluate them ?
|
|
// this is a more general problem though.
|
|
ei_cache_friendly_product_colmajor_times_vector(
|
|
IsLowerTriangular ? size-endBlock : endBlock+1,
|
|
&(lhs.const_cast_derived().coeffRef(IsLowerTriangular ? endBlock : 0, IsLowerTriangular ? startBlock : endBlock+1)),
|
|
lhs.stride(),
|
|
btmp, &(other.coeffRef(IsLowerTriangular ? endBlock : 0, c)));
|
|
// if (IsLowerTriangular)
|
|
// other.col(c).end(size-endBlock) += (lhs.block(endBlock, startBlock, size-endBlock, endBlock-startBlock)
|
|
// * other.col(c).block(startBlock,endBlock-startBlock)).lazy();
|
|
// else
|
|
// other.col(c).end(size-endBlock) += (lhs.block(endBlock, startBlock, size-endBlock, endBlock-startBlock)
|
|
// * other.col(c).block(startBlock,endBlock-startBlock)).lazy();
|
|
}
|
|
|
|
/* Now we have to process the remaining part as usual */
|
|
int i;
|
|
for(i=blockyEnd; IsLowerTriangular ? i<size-1 : i>0; i += (IsLowerTriangular ? 1 : -1) )
|
|
{
|
|
if(!(Lhs::Flags & UnitDiagBit))
|
|
other.coeffRef(i,c) /= lhs.coeff(i,i);
|
|
|
|
/* NOTE we cannot use lhs.col(i).end(size-i-1) because Part::coeffRef gets called by .col() to
|
|
* get the address of the start of the row
|
|
*/
|
|
if(IsLowerTriangular)
|
|
other.col(c).end(size-i-1) -= other.coeffRef(i,c) * Block<Lhs,Dynamic,1>(lhs, i+1,i, size-i-1,1);
|
|
else
|
|
other.col(c).start(i) -= other.coeffRef(i,c) * Block<Lhs,Dynamic,1>(lhs, 0,i, i, 1);
|
|
}
|
|
if(!(Lhs::Flags & UnitDiagBit))
|
|
other.coeffRef(i,c) /= lhs.coeff(i,i);
|
|
}
|
|
}
|
|
};
|
|
|
|
/** "in-place" version of MatrixBase::solveTriangular() where the result is written in \a other
|
|
*
|
|
* \nonstableyet
|
|
*
|
|
* The parameter is only marked 'const' to make the C++ compiler accept a temporary expression here.
|
|
* This function will const_cast it, so constness isn't honored here.
|
|
*
|
|
* See MatrixBase:solveTriangular() for the details.
|
|
*/
|
|
template<typename Derived>
|
|
template<typename OtherDerived>
|
|
void MatrixBase<Derived>::solveTriangularInPlace(const MatrixBase<OtherDerived>& _other) const
|
|
{
|
|
MatrixBase<OtherDerived>& other = _other.const_cast_derived();
|
|
ei_assert(derived().cols() == derived().rows());
|
|
ei_assert(derived().cols() == other.rows());
|
|
ei_assert(!(Flags & ZeroDiagBit));
|
|
ei_assert(Flags & (UpperTriangularBit|LowerTriangularBit));
|
|
|
|
enum { copy = ei_traits<OtherDerived>::Flags & RowMajorBit };
|
|
|
|
typedef typename ei_meta_if<copy,
|
|
typename ei_plain_matrix_type_column_major<OtherDerived>::type, OtherDerived&>::ret OtherCopy;
|
|
OtherCopy otherCopy(other.derived());
|
|
|
|
ei_solve_triangular_selector<Derived, typename ei_unref<OtherCopy>::type>::run(derived(), otherCopy);
|
|
|
|
if (copy)
|
|
other = otherCopy;
|
|
}
|
|
|
|
/** \returns the product of the inverse of \c *this with \a other, \a *this being triangular.
|
|
*
|
|
* \nonstableyet
|
|
*
|
|
* This function computes the inverse-matrix matrix product inverse(\c *this) * \a other.
|
|
* The matrix \c *this must be triangular and invertible (i.e., all the coefficients of the
|
|
* diagonal must be non zero). It works as a forward (resp. backward) substitution if \c *this
|
|
* is an upper (resp. lower) triangular matrix.
|
|
*
|
|
* It is required that \c *this be marked as either an upper or a lower triangular matrix, which
|
|
* can be done by marked(), and that is automatically the case with expressions such as those returned
|
|
* by extract().
|
|
*
|
|
* \addexample SolveTriangular \label How to solve a triangular system (aka. how to multiply the inverse of a triangular matrix by another one)
|
|
*
|
|
* Example: \include MatrixBase_marked.cpp
|
|
* Output: \verbinclude MatrixBase_marked.out
|
|
*
|
|
* This function is essentially a wrapper to the faster solveTriangularInPlace() function creating
|
|
* a temporary copy of \a other, calling solveTriangularInPlace() on the copy and returning it.
|
|
* Therefore, if \a other is not needed anymore, it is quite faster to call solveTriangularInPlace()
|
|
* instead of solveTriangular().
|
|
*
|
|
* For users coming from BLAS, this function (and more specifically solveTriangularInPlace()) offer
|
|
* all the operations supported by the \c *TRSV and \c *TRSM BLAS routines.
|
|
*
|
|
* \b Tips: to perform a \em "right-inverse-multiply" you can simply transpose the operation, e.g.:
|
|
* \code
|
|
* M * T^1 <=> T.transpose().solveTriangularInPlace(M.transpose());
|
|
* \endcode
|
|
*
|
|
* \sa solveTriangularInPlace(), marked(), extract()
|
|
*/
|
|
template<typename Derived>
|
|
template<typename OtherDerived>
|
|
typename ei_plain_matrix_type_column_major<OtherDerived>::type
|
|
MatrixBase<Derived>::solveTriangular(const MatrixBase<OtherDerived>& other) const
|
|
{
|
|
typename ei_plain_matrix_type_column_major<OtherDerived>::type res(other);
|
|
solveTriangularInPlace(res);
|
|
return res;
|
|
}
|
|
|
|
#endif // EIGEN_SOLVETRIANGULAR_H
|