mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-05-28 00:56:56 +08:00
245 lines
6.8 KiB
C++
245 lines
6.8 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#ifndef EIGEN_CHOLMODSUPPORT_H
|
|
#define EIGEN_CHOLMODSUPPORT_H
|
|
|
|
template<typename Scalar, typename CholmodType>
|
|
void ei_cholmod_configure_matrix(CholmodType& mat)
|
|
{
|
|
if (ei_is_same_type<Scalar,float>::ret)
|
|
{
|
|
mat.xtype = CHOLMOD_REAL;
|
|
mat.dtype = 1;
|
|
}
|
|
else if (ei_is_same_type<Scalar,double>::ret)
|
|
{
|
|
mat.xtype = CHOLMOD_REAL;
|
|
mat.dtype = 0;
|
|
}
|
|
else if (ei_is_same_type<Scalar,std::complex<float> >::ret)
|
|
{
|
|
mat.xtype = CHOLMOD_COMPLEX;
|
|
mat.dtype = 1;
|
|
}
|
|
else if (ei_is_same_type<Scalar,std::complex<double> >::ret)
|
|
{
|
|
mat.xtype = CHOLMOD_COMPLEX;
|
|
mat.dtype = 0;
|
|
}
|
|
else
|
|
{
|
|
ei_assert(false && "Scalar type not supported by CHOLMOD");
|
|
}
|
|
}
|
|
|
|
template<typename Derived>
|
|
cholmod_sparse SparseMatrixBase<Derived>::asCholmodMatrix()
|
|
{
|
|
typedef typename Derived::Scalar Scalar;
|
|
cholmod_sparse res;
|
|
res.nzmax = nonZeros();
|
|
res.nrow = rows();;
|
|
res.ncol = cols();
|
|
res.p = derived()._outerIndexPtr();
|
|
res.i = derived()._innerIndexPtr();
|
|
res.x = derived()._valuePtr();
|
|
res.xtype = CHOLMOD_REAL;
|
|
res.itype = CHOLMOD_INT;
|
|
res.sorted = 1;
|
|
res.packed = 1;
|
|
res.dtype = 0;
|
|
res.stype = -1;
|
|
|
|
ei_cholmod_configure_matrix<Scalar>(res);
|
|
|
|
if (Derived::Flags & SelfAdjoint)
|
|
{
|
|
if (Derived::Flags & UpperTriangular)
|
|
res.stype = 1;
|
|
else if (Derived::Flags & LowerTriangular)
|
|
res.stype = -1;
|
|
else
|
|
res.stype = 0;
|
|
}
|
|
else
|
|
res.stype = 0;
|
|
|
|
return res;
|
|
}
|
|
|
|
template<typename Derived>
|
|
cholmod_dense ei_cholmod_map_eigen_to_dense(MatrixBase<Derived>& mat)
|
|
{
|
|
EIGEN_STATIC_ASSERT((ei_traits<Derived>::Flags&RowMajorBit)==0,THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
|
|
typedef typename Derived::Scalar Scalar;
|
|
|
|
cholmod_dense res;
|
|
res.nrow = mat.rows();
|
|
res.ncol = mat.cols();
|
|
res.nzmax = res.nrow * res.ncol;
|
|
res.d = Derived::IsVectorAtCompileTime ? mat.derived().size() : mat.derived().stride();
|
|
res.x = mat.derived().data();
|
|
res.z = 0;
|
|
|
|
ei_cholmod_configure_matrix<Scalar>(res);
|
|
|
|
return res;
|
|
}
|
|
|
|
template<typename Scalar, int Flags>
|
|
MappedSparseMatrix<Scalar,Flags>::MappedSparseMatrix(cholmod_sparse& cm)
|
|
{
|
|
m_innerSize = cm.nrow;
|
|
m_outerSize = cm.ncol;
|
|
m_outerIndex = reinterpret_cast<int*>(cm.p);
|
|
m_innerIndices = reinterpret_cast<int*>(cm.i);
|
|
m_values = reinterpret_cast<Scalar*>(cm.x);
|
|
m_nnz = m_outerIndex[cm.ncol];
|
|
}
|
|
|
|
template<typename MatrixType>
|
|
class SparseLLT<MatrixType,Cholmod> : public SparseLLT<MatrixType>
|
|
{
|
|
protected:
|
|
typedef SparseLLT<MatrixType> Base;
|
|
typedef typename Base::Scalar Scalar;
|
|
typedef typename Base::RealScalar RealScalar;
|
|
typedef typename Base::CholMatrixType CholMatrixType;
|
|
using Base::MatrixLIsDirty;
|
|
using Base::SupernodalFactorIsDirty;
|
|
using Base::m_flags;
|
|
using Base::m_matrix;
|
|
using Base::m_status;
|
|
|
|
public:
|
|
|
|
SparseLLT(int flags = 0)
|
|
: Base(flags), m_cholmodFactor(0)
|
|
{
|
|
cholmod_start(&m_cholmod);
|
|
}
|
|
|
|
SparseLLT(const MatrixType& matrix, int flags = 0)
|
|
: Base(flags), m_cholmodFactor(0)
|
|
{
|
|
cholmod_start(&m_cholmod);
|
|
compute(matrix);
|
|
}
|
|
|
|
~SparseLLT()
|
|
{
|
|
if (m_cholmodFactor)
|
|
cholmod_free_factor(&m_cholmodFactor, &m_cholmod);
|
|
cholmod_finish(&m_cholmod);
|
|
}
|
|
|
|
inline const CholMatrixType& matrixL() const;
|
|
|
|
template<typename Derived>
|
|
bool solveInPlace(MatrixBase<Derived> &b) const;
|
|
|
|
void compute(const MatrixType& matrix);
|
|
|
|
protected:
|
|
mutable cholmod_common m_cholmod;
|
|
cholmod_factor* m_cholmodFactor;
|
|
};
|
|
|
|
template<typename MatrixType>
|
|
void SparseLLT<MatrixType,Cholmod>::compute(const MatrixType& a)
|
|
{
|
|
if (m_cholmodFactor)
|
|
{
|
|
cholmod_free_factor(&m_cholmodFactor, &m_cholmod);
|
|
m_cholmodFactor = 0;
|
|
}
|
|
|
|
cholmod_sparse A = const_cast<MatrixType&>(a).asCholmodMatrix();
|
|
m_cholmod.supernodal = CHOLMOD_AUTO;
|
|
// TODO
|
|
if (m_flags&IncompleteFactorization)
|
|
{
|
|
m_cholmod.nmethods = 1;
|
|
m_cholmod.method[0].ordering = CHOLMOD_NATURAL;
|
|
m_cholmod.postorder = 0;
|
|
}
|
|
else
|
|
{
|
|
m_cholmod.nmethods = 1;
|
|
m_cholmod.method[0].ordering = CHOLMOD_NATURAL;
|
|
m_cholmod.postorder = 0;
|
|
}
|
|
m_cholmod.final_ll = 1;
|
|
m_cholmodFactor = cholmod_analyze(&A, &m_cholmod);
|
|
cholmod_factorize(&A, m_cholmodFactor, &m_cholmod);
|
|
|
|
m_status = (m_status & ~SupernodalFactorIsDirty) | MatrixLIsDirty;
|
|
}
|
|
|
|
template<typename MatrixType>
|
|
inline const typename SparseLLT<MatrixType,Cholmod>::CholMatrixType&
|
|
SparseLLT<MatrixType,Cholmod>::matrixL() const
|
|
{
|
|
if (m_status & MatrixLIsDirty)
|
|
{
|
|
ei_assert(!(m_status & SupernodalFactorIsDirty));
|
|
|
|
cholmod_sparse* cmRes = cholmod_factor_to_sparse(m_cholmodFactor, &m_cholmod);
|
|
const_cast<typename Base::CholMatrixType&>(m_matrix) = MappedSparseMatrix<Scalar>(*cmRes);
|
|
free(cmRes);
|
|
|
|
m_status = (m_status & ~MatrixLIsDirty);
|
|
}
|
|
return m_matrix;
|
|
}
|
|
|
|
template<typename MatrixType>
|
|
template<typename Derived>
|
|
bool SparseLLT<MatrixType,Cholmod>::solveInPlace(MatrixBase<Derived> &b) const
|
|
{
|
|
const int size = m_cholmodFactor->n;
|
|
ei_assert(size==b.rows());
|
|
|
|
// this uses Eigen's triangular sparse solver
|
|
// if (m_status & MatrixLIsDirty)
|
|
// matrixL();
|
|
// Base::solveInPlace(b);
|
|
// as long as our own triangular sparse solver is not fully optimal,
|
|
// let's use CHOLMOD's one:
|
|
cholmod_dense cdb = ei_cholmod_map_eigen_to_dense(b);
|
|
//cholmod_dense* x = cholmod_solve(CHOLMOD_LDLt, m_cholmodFactor, &cdb, &m_cholmod);
|
|
cholmod_dense* x = cholmod_solve(CHOLMOD_A, m_cholmodFactor, &cdb, &m_cholmod);
|
|
if(!x)
|
|
{
|
|
std::cerr << "Eigen: cholmod_solve failed\n";
|
|
return false;
|
|
}
|
|
b = Matrix<typename Base::Scalar,Dynamic,1>::Map(reinterpret_cast<typename Base::Scalar*>(x->x),b.rows());
|
|
cholmod_free_dense(&x, &m_cholmod);
|
|
return true;
|
|
}
|
|
|
|
#endif // EIGEN_CHOLMODSUPPORT_H
|