mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-24 02:29:33 +08:00
365 lines
11 KiB
C++
365 lines
11 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#ifndef EIGEN_CHOLMODSUPPORT_H
|
|
#define EIGEN_CHOLMODSUPPORT_H
|
|
|
|
namespace internal {
|
|
|
|
template<typename Scalar, typename CholmodType>
|
|
void cholmod_configure_matrix(CholmodType& mat)
|
|
{
|
|
if (internal::is_same<Scalar,float>::value)
|
|
{
|
|
mat.xtype = CHOLMOD_REAL;
|
|
mat.dtype = CHOLMOD_SINGLE;
|
|
}
|
|
else if (internal::is_same<Scalar,double>::value)
|
|
{
|
|
mat.xtype = CHOLMOD_REAL;
|
|
mat.dtype = CHOLMOD_DOUBLE;
|
|
}
|
|
else if (internal::is_same<Scalar,std::complex<float> >::value)
|
|
{
|
|
mat.xtype = CHOLMOD_COMPLEX;
|
|
mat.dtype = CHOLMOD_SINGLE;
|
|
}
|
|
else if (internal::is_same<Scalar,std::complex<double> >::value)
|
|
{
|
|
mat.xtype = CHOLMOD_COMPLEX;
|
|
mat.dtype = CHOLMOD_DOUBLE;
|
|
}
|
|
else
|
|
{
|
|
eigen_assert(false && "Scalar type not supported by CHOLMOD");
|
|
}
|
|
}
|
|
|
|
} // namespace internal
|
|
|
|
/** Wraps the Eigen sparse matrix \a mat into a Cholmod sparse matrix object.
|
|
* Note that the data are shared.
|
|
*/
|
|
template<typename _Scalar, int _Options, typename _Index>
|
|
cholmod_sparse viewAsCholmod(SparseMatrix<_Scalar,_Options,_Index>& mat)
|
|
{
|
|
typedef SparseMatrix<_Scalar,_Options,_Index> MatrixType;
|
|
cholmod_sparse res;
|
|
res.nzmax = mat.nonZeros();
|
|
res.nrow = mat.rows();;
|
|
res.ncol = mat.cols();
|
|
res.p = mat._outerIndexPtr();
|
|
res.i = mat._innerIndexPtr();
|
|
res.x = mat._valuePtr();
|
|
res.sorted = 1;
|
|
res.packed = 1;
|
|
res.dtype = 0;
|
|
res.stype = -1;
|
|
|
|
if (internal::is_same<_Index,int>::value)
|
|
{
|
|
res.itype = CHOLMOD_INT;
|
|
}
|
|
else
|
|
{
|
|
eigen_assert(false && "Index type different than int is not supported yet");
|
|
}
|
|
|
|
// setup res.xtype
|
|
internal::cholmod_configure_matrix<_Scalar>(res);
|
|
|
|
res.stype = 0;
|
|
|
|
return res;
|
|
}
|
|
|
|
/** Returns a view of the Eigen sparse matrix \a mat as Cholmod sparse matrix.
|
|
* The data are not copied but shared. */
|
|
template<typename _Scalar, int _Options, typename _Index, unsigned int UpLo>
|
|
cholmod_sparse viewAsCholmod(const SparseSelfAdjointView<SparseMatrix<_Scalar,_Options,_Index>, UpLo>& mat)
|
|
{
|
|
cholmod_sparse res = viewAsCholmod(mat.matrix().const_cast_derived());
|
|
|
|
if(UpLo==Upper) res.stype = 1;
|
|
if(UpLo==Lower) res.stype = -1;
|
|
|
|
return res;
|
|
}
|
|
|
|
/** Returns a view of the Eigen \b dense matrix \a mat as Cholmod dense matrix.
|
|
* The data are not copied but shared. */
|
|
template<typename Derived>
|
|
cholmod_dense viewAsCholmod(MatrixBase<Derived>& mat)
|
|
{
|
|
EIGEN_STATIC_ASSERT((internal::traits<Derived>::Flags&RowMajorBit)==0,THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
|
|
typedef typename Derived::Scalar Scalar;
|
|
|
|
cholmod_dense res;
|
|
res.nrow = mat.rows();
|
|
res.ncol = mat.cols();
|
|
res.nzmax = res.nrow * res.ncol;
|
|
res.d = Derived::IsVectorAtCompileTime ? mat.derived().size() : mat.derived().outerStride();
|
|
res.x = mat.derived().data();
|
|
res.z = 0;
|
|
|
|
internal::cholmod_configure_matrix<Scalar>(res);
|
|
|
|
return res;
|
|
}
|
|
|
|
/** Returns a view of the Cholmod sparse matrix \a cm as an Eigen sparse matrix.
|
|
* The data are not copied but shared. */
|
|
template<typename Scalar, int Flags, typename Index>
|
|
MappedSparseMatrix<Scalar,Flags,Index> viewAsEigen(cholmod_sparse& cm)
|
|
{
|
|
return MappedSparseMatrix<Scalar,Flags,Index>
|
|
(cm.nrow, cm.ncol, reinterpret_cast<Index*>(cm.p)[cm.ncol],
|
|
reinterpret_cast<Index*>(cm.p), reinterpret_cast<Index*>(cm.i),reinterpret_cast<Scalar*>(cm.x) );
|
|
}
|
|
|
|
template<typename Derived>
|
|
class SparseSolverBase
|
|
{
|
|
public:
|
|
|
|
SparseSolverBase()
|
|
: m_info(Success), m_isInitialized(false)
|
|
{}
|
|
|
|
Derived& derived() { return *static_cast<Derived*>(this); }
|
|
const Derived& derived() const { return *static_cast<const Derived*>(this); }
|
|
|
|
#ifdef EIGEN_PARSED_BY_DOXYGEN
|
|
/** Computes the sparse Cholesky decomposition of \a matrix */
|
|
void compute(const typename Derived::MatrixType& matrix)
|
|
{
|
|
derived().compute(matrix);
|
|
}
|
|
#endif // EIGEN_PARSED_BY_DOXYGEN
|
|
|
|
/** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
|
|
*
|
|
* \sa compute()
|
|
*/
|
|
template<typename Rhs>
|
|
inline const internal::solve_retval<Derived, Rhs>
|
|
solve(const MatrixBase<Rhs>& b) const
|
|
{
|
|
eigen_assert(m_isInitialized && "LLT is not initialized.");
|
|
// eigen_assert(m_matrix.rows()==b.rows()
|
|
// && "LLT::solve(): invalid number of rows of the right hand side matrix b");
|
|
return internal::solve_retval<Derived, Rhs>(derived(), b.derived());
|
|
}
|
|
|
|
/** \brief Reports whether previous computation was successful.
|
|
*
|
|
* \returns \c Success if computation was succesful,
|
|
* \c NumericalIssue if the matrix.appears to be negative.
|
|
*/
|
|
ComputationInfo info() const
|
|
{
|
|
eigen_assert(m_isInitialized && "Decomposition is not initialized.");
|
|
return m_info;
|
|
}
|
|
|
|
protected:
|
|
|
|
mutable ComputationInfo m_info;
|
|
bool m_isInitialized;
|
|
};
|
|
|
|
enum CholmodMode {
|
|
CholmodAuto, CholmodSimplicialLLt, CholmodSupernodalLLt, CholmodLDLt
|
|
};
|
|
|
|
/** \brief A Cholesky factorization and solver based on Cholmod
|
|
*
|
|
* This class allows to solve for A.X = B sparse linear problems via a LL^T or LDL^T Cholesky factorization
|
|
* using the Cholmod library. The sparse matrix A must be selfajoint and positive definite. The vectors or matrices
|
|
* X and B can be either dense or sparse.
|
|
*
|
|
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
|
|
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
|
|
* or Upper. Default is Lower.
|
|
*
|
|
*/
|
|
template<typename _MatrixType, int _UpLo = Lower>
|
|
class CholmodDecomposition : public SparseSolverBase<CholmodDecomposition<_MatrixType,_UpLo> >
|
|
{
|
|
public:
|
|
typedef _MatrixType MatrixType;
|
|
enum { UpLo = _UpLo };
|
|
protected:
|
|
typedef SparseSolverBase<MatrixType> Base;
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename MatrixType::RealScalar RealScalar;
|
|
typedef MatrixType CholMatrixType;
|
|
typedef typename MatrixType::Index Index;
|
|
|
|
public:
|
|
|
|
CholmodDecomposition()
|
|
: m_cholmodFactor(0)
|
|
{
|
|
cholmod_start(&m_cholmod);
|
|
}
|
|
|
|
CholmodDecomposition(const MatrixType& matrix)
|
|
: m_cholmodFactor(0)
|
|
{
|
|
cholmod_start(&m_cholmod);
|
|
compute(matrix);
|
|
}
|
|
|
|
~CholmodDecomposition()
|
|
{
|
|
if(m_cholmodFactor)
|
|
cholmod_free_factor(&m_cholmodFactor, &m_cholmod);
|
|
cholmod_finish(&m_cholmod);
|
|
}
|
|
|
|
int cols() const { return m_cholmodFactor->n; }
|
|
int rows() const { return m_cholmodFactor->n; }
|
|
|
|
void setMode(CholmodMode mode)
|
|
{
|
|
switch(mode)
|
|
{
|
|
case CholmodAuto:
|
|
m_cholmod.final_asis = 1;
|
|
m_cholmod.supernodal = CHOLMOD_AUTO;
|
|
break;
|
|
case CholmodSimplicialLLt:
|
|
m_cholmod.final_asis = 0;
|
|
m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
|
|
m_cholmod.final_ll = 1;
|
|
break;
|
|
case CholmodSupernodalLLt:
|
|
m_cholmod.final_asis = 1;
|
|
m_cholmod.supernodal = CHOLMOD_SUPERNODAL;
|
|
break;
|
|
case CholmodLDLt:
|
|
m_cholmod.final_asis = 1;
|
|
m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
/** Computes the sparse Cholesky decomposition of \a matrix */
|
|
void compute(const MatrixType& matrix)
|
|
{
|
|
analyzePattern(matrix);
|
|
factorize(matrix);
|
|
}
|
|
|
|
/** Performs a symbolic decomposition on the sparcity of \a matrix.
|
|
*
|
|
* This function is particularly useful when solving for several problems having the same structure.
|
|
*
|
|
* \sa factorize()
|
|
*/
|
|
void analyzePattern(const MatrixType& matrix)
|
|
{
|
|
if(m_cholmodFactor)
|
|
{
|
|
cholmod_free_factor(&m_cholmodFactor, &m_cholmod);
|
|
m_cholmodFactor = 0;
|
|
}
|
|
cholmod_sparse A = viewAsCholmod(matrix.template selfadjointView<UpLo>());
|
|
m_cholmodFactor = cholmod_analyze(&A, &m_cholmod);
|
|
|
|
this->m_isInitialized = true;
|
|
this->m_info = Success;
|
|
m_analysisIsOk = true;
|
|
m_factorizationIsOk = false;
|
|
}
|
|
|
|
/** Performs a numeric decomposition of \a matrix
|
|
*
|
|
* The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed.
|
|
*
|
|
* \sa analyzePattern()
|
|
*/
|
|
void factorize(const MatrixType& matrix)
|
|
{
|
|
eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
|
|
cholmod_sparse A = viewAsCholmod(matrix.template selfadjointView<UpLo>());
|
|
cholmod_factorize(&A, m_cholmodFactor, &m_cholmod);
|
|
|
|
this->m_info = Success;
|
|
m_factorizationIsOk = true;
|
|
}
|
|
|
|
/** Returns a reference to the Cholmod's configuration structure to get a full control over the performed operations.
|
|
* See the Cholmod user guide for details. */
|
|
cholmod_common& cholmod() { return m_cholmod; }
|
|
|
|
/** \internal */
|
|
template<typename Rhs,typename Dest>
|
|
void _solve(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
|
|
{
|
|
eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
|
|
const Index size = m_cholmodFactor->n;
|
|
eigen_assert(size==b.rows());
|
|
|
|
// note: cd stands for Cholmod Dense
|
|
cholmod_dense b_cd = viewAsCholmod(b.const_cast_derived());
|
|
cholmod_dense* x_cd = cholmod_solve(CHOLMOD_A, m_cholmodFactor, &b_cd, &m_cholmod);
|
|
if(!x_cd)
|
|
{
|
|
this->m_info = NumericalIssue;
|
|
}
|
|
dest = Matrix<Scalar,Dynamic,1>::Map(reinterpret_cast<Scalar*>(x_cd->x),b.rows());
|
|
cholmod_free_dense(&x_cd, &m_cholmod);
|
|
}
|
|
|
|
protected:
|
|
mutable cholmod_common m_cholmod;
|
|
cholmod_factor* m_cholmodFactor;
|
|
int m_factorizationIsOk;
|
|
int m_analysisIsOk;
|
|
};
|
|
|
|
namespace internal {
|
|
|
|
template<typename _MatrixType, int _UpLo, typename Rhs>
|
|
struct solve_retval<CholmodDecomposition<_MatrixType,_UpLo>, Rhs>
|
|
: solve_retval_base<CholmodDecomposition<_MatrixType,_UpLo>, Rhs>
|
|
{
|
|
typedef CholmodDecomposition<_MatrixType,_UpLo> Dec;
|
|
EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
|
|
|
|
template<typename Dest> void evalTo(Dest& dst) const
|
|
{
|
|
dec().derived()._solve(rhs(),dst);
|
|
}
|
|
};
|
|
|
|
}
|
|
|
|
#endif // EIGEN_CHOLMODSUPPORT_H
|