mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-05-03 09:14:11 +08:00
81 lines
2.7 KiB
C++
81 lines
2.7 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#ifndef EIGEN_ARRAY_NORMS_H
|
|
#define EIGEN_ARRAY_NORMS_H
|
|
|
|
template<typename Derived, int p>
|
|
struct ei_lpNorm_selector
|
|
{
|
|
typedef typename NumTraits<typename ei_traits<Derived>::Scalar>::Real RealScalar;
|
|
inline static RealScalar run(const MatrixBase<Derived>& m)
|
|
{
|
|
return ei_pow(m.cwise().abs().cwise().pow(p).sum(), RealScalar(1)/p);
|
|
}
|
|
};
|
|
|
|
template<typename Derived>
|
|
struct ei_lpNorm_selector<Derived, 1>
|
|
{
|
|
inline static typename NumTraits<typename ei_traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
|
|
{
|
|
return m.cwise().abs().sum();
|
|
}
|
|
};
|
|
|
|
template<typename Derived>
|
|
struct ei_lpNorm_selector<Derived, 2>
|
|
{
|
|
inline static typename NumTraits<typename ei_traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
|
|
{
|
|
return m.norm();
|
|
}
|
|
};
|
|
|
|
template<typename Derived>
|
|
struct ei_lpNorm_selector<Derived, Infinity>
|
|
{
|
|
inline static typename NumTraits<typename ei_traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
|
|
{
|
|
return m.cwise().abs().maxCoeff();
|
|
}
|
|
};
|
|
|
|
/** \array_module
|
|
*
|
|
* \returns the \f$ \ell^p \f$ norm of *this, that is, returns the p-th root of the sum of the p-th powers of the absolute values
|
|
* of the coefficients of *this. If \a p is the special value \a Eigen::Infinity, this function returns the \f$ \ell^p\infty \f$
|
|
* norm, that is the maximum of the absolute values of the coefficients of *this.
|
|
*
|
|
* \sa norm()
|
|
*/
|
|
template<typename Derived>
|
|
template<int p>
|
|
inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real MatrixBase<Derived>::lpNorm() const
|
|
{
|
|
return ei_lpNorm_selector<Derived, p>::run(*this);
|
|
}
|
|
|
|
#endif // EIGEN_ARRAY_NORMS_H
|