mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-10-18 11:01:28 +08:00

- remove most of the metaprogramming kung fu in MathFunctions.h (only keep functions that differs from the std) - remove the overloads for array expression that were in the std namespace
303 lines
13 KiB
C++
303 lines
13 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
||
// for linear algebra.
|
||
//
|
||
// Copyright (C) 2012 Giacomo Po <gpo@ucla.edu>
|
||
// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||
//
|
||
// This Source Code Form is subject to the terms of the Mozilla
|
||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||
|
||
|
||
#ifndef EIGEN_MINRES_H_
|
||
#define EIGEN_MINRES_H_
|
||
|
||
|
||
namespace Eigen {
|
||
|
||
namespace internal {
|
||
|
||
/** \internal Low-level MINRES algorithm
|
||
* \param mat The matrix A
|
||
* \param rhs The right hand side vector b
|
||
* \param x On input and initial solution, on output the computed solution.
|
||
* \param precond A right preconditioner being able to efficiently solve for an
|
||
* approximation of Ax=b (regardless of b)
|
||
* \param iters On input the max number of iteration, on output the number of performed iterations.
|
||
* \param tol_error On input the tolerance error, on output an estimation of the relative error.
|
||
*/
|
||
template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
|
||
EIGEN_DONT_INLINE
|
||
void minres(const MatrixType& mat, const Rhs& rhs, Dest& x,
|
||
const Preconditioner& precond, int& iters,
|
||
typename Dest::RealScalar& tol_error)
|
||
{
|
||
using std::sqrt;
|
||
typedef typename Dest::RealScalar RealScalar;
|
||
typedef typename Dest::Scalar Scalar;
|
||
typedef Matrix<Scalar,Dynamic,1> VectorType;
|
||
|
||
// initialize
|
||
const int maxIters(iters); // initialize maxIters to iters
|
||
const int N(mat.cols()); // the size of the matrix
|
||
const RealScalar rhsNorm2(rhs.squaredNorm());
|
||
const RealScalar threshold2(tol_error*tol_error*rhsNorm2); // convergence threshold (compared to residualNorm2)
|
||
|
||
// Initialize preconditioned Lanczos
|
||
// VectorType v_old(N); // will be initialized inside loop
|
||
VectorType v( VectorType::Zero(N) ); //initialize v
|
||
VectorType v_new(rhs-mat*x); //initialize v_new
|
||
RealScalar residualNorm2(v_new.squaredNorm());
|
||
// VectorType w(N); // will be initialized inside loop
|
||
VectorType w_new(precond.solve(v_new)); // initialize w_new
|
||
// RealScalar beta; // will be initialized inside loop
|
||
RealScalar beta_new2(v_new.dot(w_new));
|
||
assert(beta_new2 >= 0 && "PRECONDITIONER IS NOT POSITIVE DEFINITE");
|
||
RealScalar beta_new(sqrt(beta_new2));
|
||
const RealScalar beta_one(beta_new);
|
||
v_new /= beta_new;
|
||
w_new /= beta_new;
|
||
// Initialize other variables
|
||
RealScalar c(1.0); // the cosine of the Givens rotation
|
||
RealScalar c_old(1.0);
|
||
RealScalar s(0.0); // the sine of the Givens rotation
|
||
RealScalar s_old(0.0); // the sine of the Givens rotation
|
||
// VectorType p_oold(N); // will be initialized in loop
|
||
VectorType p_old(VectorType::Zero(N)); // initialize p_old=0
|
||
VectorType p(p_old); // initialize p=0
|
||
RealScalar eta(1.0);
|
||
|
||
iters = 0; // reset iters
|
||
while ( iters < maxIters ){
|
||
|
||
// Preconditioned Lanczos
|
||
/* Note that there are 4 variants on the Lanczos algorithm. These are
|
||
* described in Paige, C. C. (1972). Computational variants of
|
||
* the Lanczos method for the eigenproblem. IMA Journal of Applied
|
||
* Mathematics, 10(3), 373–381. The current implementation corresponds
|
||
* to the case A(2,7) in the paper. It also corresponds to
|
||
* algorithm 6.14 in Y. Saad, Iterative Methods for Sparse Linear
|
||
* Systems, 2003 p.173. For the preconditioned version see
|
||
* A. Greenbaum, Iterative Methods for Solving Linear Systems, SIAM (1987).
|
||
*/
|
||
const RealScalar beta(beta_new);
|
||
// v_old = v; // update: at first time step, this makes v_old = 0 so value of beta doesn't matter
|
||
const VectorType v_old(v); // NOT SURE IF CREATING v_old EVERY ITERATION IS EFFICIENT
|
||
v = v_new; // update
|
||
// w = w_new; // update
|
||
const VectorType w(w_new); // NOT SURE IF CREATING w EVERY ITERATION IS EFFICIENT
|
||
v_new.noalias() = mat*w - beta*v_old; // compute v_new
|
||
const RealScalar alpha = v_new.dot(w);
|
||
v_new -= alpha*v; // overwrite v_new
|
||
w_new = precond.solve(v_new); // overwrite w_new
|
||
beta_new2 = v_new.dot(w_new); // compute beta_new
|
||
assert(beta_new2 >= 0 && "PRECONDITIONER IS NOT POSITIVE DEFINITE");
|
||
beta_new = sqrt(beta_new2); // compute beta_new
|
||
v_new /= beta_new; // overwrite v_new for next iteration
|
||
w_new /= beta_new; // overwrite w_new for next iteration
|
||
|
||
// Givens rotation
|
||
const RealScalar r2 =s*alpha+c*c_old*beta; // s, s_old, c and c_old are still from previous iteration
|
||
const RealScalar r3 =s_old*beta; // s, s_old, c and c_old are still from previous iteration
|
||
const RealScalar r1_hat=c*alpha-c_old*s*beta;
|
||
const RealScalar r1 =sqrt( std::pow(r1_hat,2) + std::pow(beta_new,2) );
|
||
c_old = c; // store for next iteration
|
||
s_old = s; // store for next iteration
|
||
c=r1_hat/r1; // new cosine
|
||
s=beta_new/r1; // new sine
|
||
|
||
// Update solution
|
||
// p_oold = p_old;
|
||
const VectorType p_oold(p_old); // NOT SURE IF CREATING p_oold EVERY ITERATION IS EFFICIENT
|
||
p_old = p;
|
||
p.noalias()=(w-r2*p_old-r3*p_oold) /r1; // IS NOALIAS REQUIRED?
|
||
x += beta_one*c*eta*p;
|
||
residualNorm2 *= s*s;
|
||
|
||
if ( residualNorm2 < threshold2){
|
||
break;
|
||
}
|
||
|
||
eta=-s*eta; // update eta
|
||
iters++; // increment iteration number (for output purposes)
|
||
}
|
||
tol_error = std::sqrt(residualNorm2 / rhsNorm2); // return error. Note that this is the estimated error. The real error |Ax-b|/|b| may be slightly larger
|
||
}
|
||
|
||
}
|
||
|
||
template< typename _MatrixType, int _UpLo=Lower,
|
||
typename _Preconditioner = IdentityPreconditioner>
|
||
// typename _Preconditioner = IdentityPreconditioner<typename _MatrixType::Scalar> > // preconditioner must be positive definite
|
||
class MINRES;
|
||
|
||
namespace internal {
|
||
|
||
template< typename _MatrixType, int _UpLo, typename _Preconditioner>
|
||
struct traits<MINRES<_MatrixType,_UpLo,_Preconditioner> >
|
||
{
|
||
typedef _MatrixType MatrixType;
|
||
typedef _Preconditioner Preconditioner;
|
||
};
|
||
|
||
}
|
||
|
||
/** \ingroup IterativeLinearSolvers_Module
|
||
* \brief A minimal residual solver for sparse symmetric problems
|
||
*
|
||
* This class allows to solve for A.x = b sparse linear problems using the MINRES algorithm
|
||
* of Paige and Saunders (1975). The sparse matrix A must be symmetric (possibly indefinite).
|
||
* The vectors x and b can be either dense or sparse.
|
||
*
|
||
* \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
|
||
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
|
||
* or Upper. Default is Lower.
|
||
* \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
|
||
*
|
||
* The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
|
||
* and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
|
||
* and NumTraits<Scalar>::epsilon() for the tolerance.
|
||
*
|
||
* This class can be used as the direct solver classes. Here is a typical usage example:
|
||
* \code
|
||
* int n = 10000;
|
||
* VectorXd x(n), b(n);
|
||
* SparseMatrix<double> A(n,n);
|
||
* // fill A and b
|
||
* MINRES<SparseMatrix<double> > mr;
|
||
* mr.compute(A);
|
||
* x = mr.solve(b);
|
||
* std::cout << "#iterations: " << mr.iterations() << std::endl;
|
||
* std::cout << "estimated error: " << mr.error() << std::endl;
|
||
* // update b, and solve again
|
||
* x = mr.solve(b);
|
||
* \endcode
|
||
*
|
||
* By default the iterations start with x=0 as an initial guess of the solution.
|
||
* One can control the start using the solveWithGuess() method. Here is a step by
|
||
* step execution example starting with a random guess and printing the evolution
|
||
* of the estimated error:
|
||
* * \code
|
||
* x = VectorXd::Random(n);
|
||
* mr.setMaxIterations(1);
|
||
* int i = 0;
|
||
* do {
|
||
* x = mr.solveWithGuess(b,x);
|
||
* std::cout << i << " : " << mr.error() << std::endl;
|
||
* ++i;
|
||
* } while (mr.info()!=Success && i<100);
|
||
* \endcode
|
||
* Note that such a step by step excution is slightly slower.
|
||
*
|
||
* \sa class ConjugateGradient, BiCGSTAB, SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
|
||
*/
|
||
template< typename _MatrixType, int _UpLo, typename _Preconditioner>
|
||
class MINRES : public IterativeSolverBase<MINRES<_MatrixType,_UpLo,_Preconditioner> >
|
||
{
|
||
|
||
typedef IterativeSolverBase<MINRES> Base;
|
||
using Base::mp_matrix;
|
||
using Base::m_error;
|
||
using Base::m_iterations;
|
||
using Base::m_info;
|
||
using Base::m_isInitialized;
|
||
public:
|
||
typedef _MatrixType MatrixType;
|
||
typedef typename MatrixType::Scalar Scalar;
|
||
typedef typename MatrixType::Index Index;
|
||
typedef typename MatrixType::RealScalar RealScalar;
|
||
typedef _Preconditioner Preconditioner;
|
||
|
||
enum {UpLo = _UpLo};
|
||
|
||
public:
|
||
|
||
/** Default constructor. */
|
||
MINRES() : Base() {}
|
||
|
||
/** Initialize the solver with matrix \a A for further \c Ax=b solving.
|
||
*
|
||
* This constructor is a shortcut for the default constructor followed
|
||
* by a call to compute().
|
||
*
|
||
* \warning this class stores a reference to the matrix A as well as some
|
||
* precomputed values that depend on it. Therefore, if \a A is changed
|
||
* this class becomes invalid. Call compute() to update it with the new
|
||
* matrix A, or modify a copy of A.
|
||
*/
|
||
MINRES(const MatrixType& A) : Base(A) {}
|
||
|
||
/** Destructor. */
|
||
~MINRES(){}
|
||
|
||
/** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
|
||
* \a x0 as an initial solution.
|
||
*
|
||
* \sa compute()
|
||
*/
|
||
template<typename Rhs,typename Guess>
|
||
inline const internal::solve_retval_with_guess<MINRES, Rhs, Guess>
|
||
solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
|
||
{
|
||
eigen_assert(m_isInitialized && "MINRES is not initialized.");
|
||
eigen_assert(Base::rows()==b.rows()
|
||
&& "MINRES::solve(): invalid number of rows of the right hand side matrix b");
|
||
return internal::solve_retval_with_guess
|
||
<MINRES, Rhs, Guess>(*this, b.derived(), x0);
|
||
}
|
||
|
||
/** \internal */
|
||
template<typename Rhs,typename Dest>
|
||
void _solveWithGuess(const Rhs& b, Dest& x) const
|
||
{
|
||
m_iterations = Base::maxIterations();
|
||
m_error = Base::m_tolerance;
|
||
|
||
for(int j=0; j<b.cols(); ++j)
|
||
{
|
||
m_iterations = Base::maxIterations();
|
||
m_error = Base::m_tolerance;
|
||
|
||
typename Dest::ColXpr xj(x,j);
|
||
internal::minres(mp_matrix->template selfadjointView<UpLo>(), b.col(j), xj,
|
||
Base::m_preconditioner, m_iterations, m_error);
|
||
}
|
||
|
||
m_isInitialized = true;
|
||
m_info = m_error <= Base::m_tolerance ? Success : NoConvergence;
|
||
}
|
||
|
||
/** \internal */
|
||
template<typename Rhs,typename Dest>
|
||
void _solve(const Rhs& b, Dest& x) const
|
||
{
|
||
x.setZero();
|
||
_solveWithGuess(b,x);
|
||
}
|
||
|
||
protected:
|
||
|
||
};
|
||
|
||
namespace internal {
|
||
|
||
template<typename _MatrixType, int _UpLo, typename _Preconditioner, typename Rhs>
|
||
struct solve_retval<MINRES<_MatrixType,_UpLo,_Preconditioner>, Rhs>
|
||
: solve_retval_base<MINRES<_MatrixType,_UpLo,_Preconditioner>, Rhs>
|
||
{
|
||
typedef MINRES<_MatrixType,_UpLo,_Preconditioner> Dec;
|
||
EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
|
||
|
||
template<typename Dest> void evalTo(Dest& dst) const
|
||
{
|
||
dec()._solve(rhs(),dst);
|
||
}
|
||
};
|
||
|
||
} // end namespace internal
|
||
|
||
} // end namespace Eigen
|
||
|
||
#endif // EIGEN_MINRES_H
|
||
|