mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-30 15:54:13 +08:00
160 lines
5.1 KiB
C++
160 lines
5.1 KiB
C++
//=====================================================
|
|
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
|
//=====================================================
|
|
//
|
|
// This program is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License
|
|
// as published by the Free Software Foundation; either version 2
|
|
// of the License, or (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program; if not, write to the Free Software
|
|
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
//
|
|
#ifndef EIGEN2_INTERFACE_HH
|
|
#define EIGEN2_INTERFACE_HH
|
|
// #include <cblas.h>
|
|
#include <Eigen/Core>
|
|
#include <Eigen/Cholesky>
|
|
#include <Eigen/LU>
|
|
#include <Eigen/QR>
|
|
#include <vector>
|
|
#include "btl.hh"
|
|
|
|
using namespace Eigen;
|
|
|
|
template <class real, int SIZE = Dynamic>
|
|
class eigen2_interface {
|
|
public:
|
|
enum { IsFixedSize = (SIZE != Dynamic) };
|
|
|
|
typedef real real_type;
|
|
|
|
typedef std::vector<real> stl_vector;
|
|
typedef std::vector<stl_vector> stl_matrix;
|
|
|
|
typedef Eigen::Matrix<real, SIZE, SIZE> gene_matrix;
|
|
typedef Eigen::Matrix<real, SIZE, 1> gene_vector;
|
|
|
|
static inline std::string name(void) {
|
|
#if defined(EIGEN_VECTORIZE_SSE)
|
|
if (SIZE == Dynamic)
|
|
return "eigen2";
|
|
else
|
|
return "tiny_eigen2";
|
|
#elif defined(EIGEN_VECTORIZE_ALTIVEC) || defined(EIGEN_VECTORIZE_VSX)
|
|
if (SIZE == Dynamic)
|
|
return "eigen2";
|
|
else
|
|
return "tiny_eigen2";
|
|
#else
|
|
if (SIZE == Dynamic)
|
|
return "eigen2_novec";
|
|
else
|
|
return "tiny_eigen2_novec";
|
|
#endif
|
|
}
|
|
|
|
static void free_matrix(gene_matrix& A, int N) {}
|
|
|
|
static void free_vector(gene_vector& B) {}
|
|
|
|
static BTL_DONT_INLINE void matrix_from_stl(gene_matrix& A, stl_matrix& A_stl) {
|
|
A.resize(A_stl[0].size(), A_stl.size());
|
|
|
|
for (int j = 0; j < A_stl.size(); j++) {
|
|
for (int i = 0; i < A_stl[j].size(); i++) {
|
|
A.coeffRef(i, j) = A_stl[j][i];
|
|
}
|
|
}
|
|
}
|
|
|
|
static BTL_DONT_INLINE void vector_from_stl(gene_vector& B, stl_vector& B_stl) {
|
|
B.resize(B_stl.size(), 1);
|
|
|
|
for (int i = 0; i < B_stl.size(); i++) {
|
|
B.coeffRef(i) = B_stl[i];
|
|
}
|
|
}
|
|
|
|
static BTL_DONT_INLINE void vector_to_stl(gene_vector& B, stl_vector& B_stl) {
|
|
for (int i = 0; i < B_stl.size(); i++) {
|
|
B_stl[i] = B.coeff(i);
|
|
}
|
|
}
|
|
|
|
static BTL_DONT_INLINE void matrix_to_stl(gene_matrix& A, stl_matrix& A_stl) {
|
|
int N = A_stl.size();
|
|
|
|
for (int j = 0; j < N; j++) {
|
|
A_stl[j].resize(N);
|
|
for (int i = 0; i < N; i++) {
|
|
A_stl[j][i] = A.coeff(i, j);
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline void matrix_matrix_product(const gene_matrix& A, const gene_matrix& B, gene_matrix& X, int N) {
|
|
X = (A * B).lazy();
|
|
}
|
|
|
|
static inline void transposed_matrix_matrix_product(const gene_matrix& A, const gene_matrix& B, gene_matrix& X,
|
|
int N) {
|
|
X = (A.transpose() * B.transpose()).lazy();
|
|
}
|
|
|
|
static inline void ata_product(const gene_matrix& A, gene_matrix& X, int N) { X = (A.transpose() * A).lazy(); }
|
|
|
|
static inline void aat_product(const gene_matrix& A, gene_matrix& X, int N) { X = (A * A.transpose()).lazy(); }
|
|
|
|
static inline void matrix_vector_product(const gene_matrix& A, const gene_vector& B, gene_vector& X, int N) {
|
|
X = (A * B) /*.lazy()*/;
|
|
}
|
|
|
|
static inline void atv_product(gene_matrix& A, gene_vector& B, gene_vector& X, int N) {
|
|
X = (A.transpose() * B) /*.lazy()*/;
|
|
}
|
|
|
|
static inline void axpy(real coef, const gene_vector& X, gene_vector& Y, int N) { Y += coef * X; }
|
|
|
|
static inline void axpby(real a, const gene_vector& X, real b, gene_vector& Y, int N) { Y = a * X + b * Y; }
|
|
|
|
static inline void copy_matrix(const gene_matrix& source, gene_matrix& cible, int N) { cible = source; }
|
|
|
|
static inline void copy_vector(const gene_vector& source, gene_vector& cible, int N) { cible = source; }
|
|
|
|
static inline void trisolve_lower(const gene_matrix& L, const gene_vector& B, gene_vector& X, int N) {
|
|
X = L.template marked<LowerTriangular>().solveTriangular(B);
|
|
}
|
|
|
|
static inline void trisolve_lower_matrix(const gene_matrix& L, const gene_matrix& B, gene_matrix& X, int N) {
|
|
X = L.template marked<LowerTriangular>().solveTriangular(B);
|
|
}
|
|
|
|
static inline void cholesky(const gene_matrix& X, gene_matrix& C, int N) {
|
|
C = X.llt().matrixL();
|
|
// C = X;
|
|
// Cholesky<gene_matrix>::computeInPlace(C);
|
|
// Cholesky<gene_matrix>::computeInPlaceBlock(C);
|
|
}
|
|
|
|
static inline void lu_decomp(const gene_matrix& X, gene_matrix& C, int N) {
|
|
C = X.lu().matrixLU();
|
|
// C = X.inverse();
|
|
}
|
|
|
|
static inline void tridiagonalization(const gene_matrix& X, gene_matrix& C, int N) {
|
|
C = Tridiagonalization<gene_matrix>(X).packedMatrix();
|
|
}
|
|
|
|
static inline void hessenberg(const gene_matrix& X, gene_matrix& C, int N) {
|
|
C = HessenbergDecomposition<gene_matrix>(X).packedMatrix();
|
|
}
|
|
};
|
|
|
|
#endif
|