eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceSycl.h

257 lines
12 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Mehdi Goli Codeplay Software Ltd.
// Ralph Potter Codeplay Software Ltd.
// Luke Iwanski Codeplay Software Ltd.
// Contact: <eigen@codeplay.com>
// Copyright (C) 2016 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#if defined(EIGEN_USE_SYCL) && !defined(EIGEN_CXX11_TENSOR_TENSOR_DEVICE_SYCL_H)
#define EIGEN_CXX11_TENSOR_TENSOR_DEVICE_SYCL_H
namespace Eigen {
auto get_sycl_supported_devices()->decltype(cl::sycl::device::get_devices()){
auto devices = cl::sycl::device::get_devices();
std::vector<cl::sycl::device>::iterator it =devices.begin();
while(it!=devices.end()) {
/// get_devices returns all the available opencl devices. Either use device_selector or exclude devices that computecpp does not support (AMD OpenCL for CPU )
auto s= (*it).template get_info<cl::sycl::info::device::vendor>();
std::transform(s.begin(), s.end(), s.begin(), ::tolower);
if((*it).is_cpu() && s.find("amd")!=std::string::npos){
it=devices.erase(it);
}
else{
++it;
}
}
printf("Device size %ld\n", devices.size());
return devices;
}
#define ConvertToActualTypeSycl(T, buf_acc) reinterpret_cast<typename cl::sycl::global_ptr<T>::pointer_t>((&(*buf_acc.get_pointer())))
struct QueueInterface {
/// class members:
bool exception_caught_ = false;
mutable std::mutex mutex_;
/// std::map is the container used to make sure that we create only one buffer
/// per pointer. The lifespan of the buffer now depends on the lifespan of SyclDevice.
/// If a non-read-only pointer is needed to be accessed on the host we should manually deallocate it.
mutable std::map<const uint8_t *, cl::sycl::buffer<uint8_t, 1>> buffer_map;
/// sycl queue
mutable cl::sycl::queue m_queue;
/// creating device by using cl::sycl::selector or cl::sycl::device both are the same and can be captured throufh dev_Selector typename
/// SyclStreamDevice is not owned. it is the caller's responsibility to destroy it.
template<typename dev_Selector> explicit QueueInterface(dev_Selector s):
#ifdef EIGEN_EXCEPTIONS
m_queue(cl::sycl::queue(s, [&](cl::sycl::exception_list l) {
for (const auto& e : l) {
try {
if (e) {
exception_caught_ = true;
std::rethrow_exception(e);
}
} catch (cl::sycl::exception e) {
std::cerr << e.what() << std::endl;
}
}
}))
#else
m_queue(cl::sycl::queue(s))
#endif
{}
/// Allocating device pointer. This pointer is actually an 8 bytes host pointer used as key to access the sycl device buffer.
/// The reason is that we cannot use device buffer as a pointer as a m_data in Eigen leafNode expressions. So we create a key
/// pointer to be used in Eigen expression construction. When we convert the Eigen construction into the sycl construction we
/// use this pointer as a key in our buffer_map and we make sure that we dedicate only one buffer only for this pointer.
/// The device pointer would be deleted by calling deallocate function.
EIGEN_STRONG_INLINE void* allocate(size_t num_bytes) const {
auto buf = cl::sycl::buffer<uint8_t,1>(cl::sycl::range<1>(num_bytes));
auto ptr =buf.get_access<cl::sycl::access::mode::discard_write, cl::sycl::access::target::host_buffer>().get_pointer();
buf.set_final_data(nullptr);
std::lock_guard<std::mutex> lock(mutex_);
buffer_map.insert(std::pair<const uint8_t *, cl::sycl::buffer<uint8_t, 1>>(ptr,buf));
return static_cast<void*>(ptr);
}
/// This is used to deallocate the device pointer. p is used as a key inside
/// the map to find the device buffer and delete it.
EIGEN_STRONG_INLINE void deallocate(const void *p) const {
std::lock_guard<std::mutex> lock(mutex_);
auto it = buffer_map.find(static_cast<const uint8_t*>(p));
if (it != buffer_map.end()) {
buffer_map.erase(it);
}
}
EIGEN_STRONG_INLINE void deallocate_all() const {
std::lock_guard<std::mutex> lock(mutex_);
buffer_map.clear();
}
EIGEN_STRONG_INLINE std::map<const uint8_t *, cl::sycl::buffer<uint8_t,1>>::iterator find_buffer(const void* ptr) const {
std::lock_guard<std::mutex> lock(mutex_);
auto it1 = buffer_map.find(static_cast<const uint8_t*>(ptr));
if (it1 != buffer_map.end()){
return it1;
}
else{
for(std::map<const uint8_t *, cl::sycl::buffer<uint8_t,1>>::iterator it=buffer_map.begin(); it!=buffer_map.end(); ++it){
auto size = it->second.get_size();
if((it->first < (static_cast<const uint8_t*>(ptr))) && ((static_cast<const uint8_t*>(ptr)) < (it->first + size)) ) return it;
}
}
std::cerr << "No sycl buffer found. Make sure that you have allocated memory for your buffer by calling allocate function in SyclDevice"<< std::endl;
abort();
}
// This function checks if the runtime recorded an error for the
// underlying stream device.
EIGEN_STRONG_INLINE bool ok() const {
if (!exception_caught_) {
m_queue.throw_asynchronous();
}
return !exception_caught_;
}
// destructor
~QueueInterface() { buffer_map.clear(); }
};
struct SyclDevice {
// class member.
QueueInterface* m_queue_stream;
/// QueueInterface is not owned. it is the caller's responsibility to destroy it.
explicit SyclDevice(QueueInterface* queue_stream) : m_queue_stream(queue_stream){}
/// Creation of sycl accessor for a buffer. This function first tries to find
/// the buffer in the buffer_map. If found it gets the accessor from it, if not,
/// the function then adds an entry by creating a sycl buffer for that particular pointer.
template <cl::sycl::access::mode AcMd> EIGEN_STRONG_INLINE cl::sycl::accessor<uint8_t, 1, AcMd, cl::sycl::access::target::global_buffer>
get_sycl_accessor(cl::sycl::handler &cgh, const void* ptr) const {
return (get_sycl_buffer(ptr).template get_access<AcMd, cl::sycl::access::target::global_buffer>(cgh));
}
/// Accessing the created sycl device buffer for the device pointer
EIGEN_STRONG_INLINE cl::sycl::buffer<uint8_t, 1>& get_sycl_buffer(const void * ptr) const {
return m_queue_stream->find_buffer(ptr)->second;
}
/// This is used to prepare the number of threads and also the number of threads per block for sycl kernels
template<typename Index>
EIGEN_STRONG_INLINE void parallel_for_setup(Index n, Index &tileSize, Index &rng, Index &GRange) const {
tileSize =static_cast<Index>(sycl_queue().get_device(). template get_info<cl::sycl::info::device::max_work_group_size>()/2);
rng = n;
if (rng==0) rng=static_cast<Index>(1);
GRange=rng;
if (tileSize>GRange) tileSize=GRange;
else if(GRange>tileSize){
Index xMode = static_cast<Index>(GRange % tileSize);
if (xMode != 0) GRange += static_cast<Index>(tileSize - xMode);
}
}
/// allocate device memory
EIGEN_STRONG_INLINE void *allocate(size_t num_bytes) const {
return m_queue_stream->allocate(num_bytes);
}
/// deallocate device memory
EIGEN_STRONG_INLINE void deallocate(const void *p) const {
m_queue_stream->deallocate(p);
}
// some runtime conditions that can be applied here
EIGEN_STRONG_INLINE bool isDeviceSuitable() const { return true; }
/// the memcpy function
template<typename T> EIGEN_STRONG_INLINE void memcpy(void *dst, const T *src, size_t n) const {
auto it1 = m_queue_stream->find_buffer((void*)src);
auto it2 = m_queue_stream->find_buffer(dst);
auto offset= (static_cast<const uint8_t*>(static_cast<const void*>(src))) - it1->first;
auto i= (static_cast<const uint8_t*>(dst)) - it2->first;
offset/=sizeof(T);
i/=sizeof(T);
size_t rng, GRange, tileSize;
parallel_for_setup(n/sizeof(T), tileSize, rng, GRange);
sycl_queue().submit([&](cl::sycl::handler &cgh) {
auto src_acc =it1->second.template get_access<cl::sycl::access::mode::read, cl::sycl::access::target::global_buffer>(cgh);
auto dst_acc =it2->second.template get_access<cl::sycl::access::mode::discard_write, cl::sycl::access::target::global_buffer>(cgh);
cgh.parallel_for(cl::sycl::nd_range<1>(cl::sycl::range<1>(GRange), cl::sycl::range<1>(tileSize)), TensorSycl::internal::MemCopyFunctor<T>(src_acc, dst_acc, rng, 0, offset));
});
sycl_queue().throw_asynchronous();
}
/// The memcpyHostToDevice is used to copy the device only pointer to a host pointer. Using the device
/// pointer created as a key we find the sycl buffer and get the host accessor with discard_write mode
/// on it. Using a discard_write accessor guarantees that we do not bring back the current value of the
/// buffer to host. Then we use the memcpy to copy the data to the host accessor. The first time that
/// this buffer is accessed, the data will be copied to the device.
template<typename T> EIGEN_STRONG_INLINE void memcpyHostToDevice(T *dst, const T *src, size_t n) const {
auto host_acc= get_sycl_buffer(dst). template get_access<cl::sycl::access::mode::discard_write, cl::sycl::access::target::host_buffer>();
::memcpy(host_acc.get_pointer(), src, n);
}
/// The memcpyDeviceToHost is used to copy the data from host to device. Here, in order to avoid double copying the data. We create a sycl
/// buffer with map_allocator for the destination pointer with a discard_write accessor on it. The lifespan of the buffer is bound to the
/// lifespan of the memcpyDeviceToHost function. We create a kernel to copy the data, from the device- only source buffer to the destination
/// buffer with map_allocator on the gpu in parallel. At the end of the function call the destination buffer would be destroyed and the data
/// would be available on the dst pointer using fast copy technique (map_allocator). In this case we can make sure that we copy the data back
/// to the cpu only once per function call.
template<typename T> EIGEN_STRONG_INLINE void memcpyDeviceToHost(void *dst, const T *src, size_t n) const {
auto it = m_queue_stream->find_buffer(src);
auto offset =static_cast<const uint8_t*>(static_cast<const void*>(src))- it->first;
offset/=sizeof(T);
size_t rng, GRange, tileSize;
parallel_for_setup(n/sizeof(T), tileSize, rng, GRange);
// Assuming that the dst is the start of the destination pointer
auto dest_buf = cl::sycl::buffer<uint8_t, 1, cl::sycl::map_allocator<uint8_t> >(static_cast<uint8_t*>(dst), cl::sycl::range<1>(rng*sizeof(T)));
sycl_queue().submit([&](cl::sycl::handler &cgh) {
auto src_acc= it->second.template get_access<cl::sycl::access::mode::read, cl::sycl::access::target::global_buffer>(cgh);
auto dst_acc =dest_buf.template get_access<cl::sycl::access::mode::discard_write, cl::sycl::access::target::global_buffer>(cgh);
cgh.parallel_for( cl::sycl::nd_range<1>(cl::sycl::range<1>(GRange), cl::sycl::range<1>(tileSize)), TensorSycl::internal::MemCopyFunctor<T>(src_acc, dst_acc, rng, 0, offset));
});
sycl_queue().throw_asynchronous();
}
/// returning the sycl queue
EIGEN_STRONG_INLINE cl::sycl::queue& sycl_queue() const { return m_queue_stream->m_queue;}
/// Here is the implementation of memset function on sycl.
template<typename T> EIGEN_STRONG_INLINE void memset(T *buff, int c, size_t n) const {
size_t rng, GRange, tileSize;
parallel_for_setup(n/sizeof(T), tileSize, rng, GRange);
sycl_queue().submit([&](cl::sycl::handler &cgh) {
auto buf_acc =get_sycl_buffer(static_cast<uint8_t*>(static_cast<void*>(buff))). template get_access<cl::sycl::access::mode::discard_write, cl::sycl::access::target::global_buffer>(cgh);
cgh.parallel_for<SyclDevice>( cl::sycl::nd_range<1>(cl::sycl::range<1>(GRange), cl::sycl::range<1>(tileSize)), [=](cl::sycl::nd_item<1> itemID) {
auto globalid=itemID.get_global_linear_id();
if (globalid< n) {
for(size_t i=0; i<sizeof(T); i++)
buf_acc[globalid*sizeof(T) + i] = c;
}
});
});
sycl_queue().throw_asynchronous();
}
/// No need for sycl it should act the same as CPU version
EIGEN_STRONG_INLINE int majorDeviceVersion() const { return 1; }
/// There is no need to synchronise the buffer in sycl as it is automatically handled by sycl runtime scheduler.
EIGEN_STRONG_INLINE void synchronize() const {
sycl_queue().wait_and_throw();
}
// This function checks if the runtime recorded an error for the
// underlying stream device.
EIGEN_STRONG_INLINE bool ok() const {
return m_queue_stream->ok();
}
};
} // end namespace Eigen
#endif // EIGEN_CXX11_TENSOR_TENSOR_DEVICE_SYCL_H