mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-10-22 13:01:06 +08:00
428 lines
17 KiB
C++
428 lines
17 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
// Copyright (C) 2009-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_TRANSPOSE_H
|
|
#define EIGEN_TRANSPOSE_H
|
|
|
|
// IWYU pragma: private
|
|
#include "./InternalHeaderCheck.h"
|
|
|
|
namespace Eigen {
|
|
|
|
namespace internal {
|
|
template <typename MatrixType>
|
|
struct traits<Transpose<MatrixType> > : public traits<MatrixType> {
|
|
typedef typename ref_selector<MatrixType>::type MatrixTypeNested;
|
|
typedef std::remove_reference_t<MatrixTypeNested> MatrixTypeNestedPlain;
|
|
enum {
|
|
RowsAtCompileTime = MatrixType::ColsAtCompileTime,
|
|
ColsAtCompileTime = MatrixType::RowsAtCompileTime,
|
|
MaxRowsAtCompileTime = MatrixType::MaxColsAtCompileTime,
|
|
MaxColsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
|
FlagsLvalueBit = is_lvalue<MatrixType>::value ? LvalueBit : 0,
|
|
Flags0 = traits<MatrixTypeNestedPlain>::Flags & ~(LvalueBit | NestByRefBit),
|
|
Flags1 = Flags0 | FlagsLvalueBit,
|
|
Flags = Flags1 ^ RowMajorBit,
|
|
InnerStrideAtCompileTime = inner_stride_at_compile_time<MatrixType>::ret,
|
|
OuterStrideAtCompileTime = outer_stride_at_compile_time<MatrixType>::ret
|
|
};
|
|
};
|
|
} // namespace internal
|
|
|
|
template <typename MatrixType, typename StorageKind>
|
|
class TransposeImpl;
|
|
|
|
/** \class Transpose
|
|
* \ingroup Core_Module
|
|
*
|
|
* \brief Expression of the transpose of a matrix
|
|
*
|
|
* \tparam MatrixType the type of the object of which we are taking the transpose
|
|
*
|
|
* This class represents an expression of the transpose of a matrix.
|
|
* It is the return type of MatrixBase::transpose() and MatrixBase::adjoint()
|
|
* and most of the time this is the only way it is used.
|
|
*
|
|
* \sa MatrixBase::transpose(), MatrixBase::adjoint()
|
|
*/
|
|
template <typename MatrixType>
|
|
class Transpose : public TransposeImpl<MatrixType, typename internal::traits<MatrixType>::StorageKind> {
|
|
public:
|
|
typedef typename internal::ref_selector<MatrixType>::non_const_type MatrixTypeNested;
|
|
|
|
typedef typename TransposeImpl<MatrixType, typename internal::traits<MatrixType>::StorageKind>::Base Base;
|
|
EIGEN_GENERIC_PUBLIC_INTERFACE(Transpose)
|
|
typedef internal::remove_all_t<MatrixType> NestedExpression;
|
|
|
|
EIGEN_DEVICE_FUNC explicit EIGEN_STRONG_INLINE Transpose(MatrixType& matrix) : m_matrix(matrix) {}
|
|
|
|
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Transpose)
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr Index rows() const noexcept { return m_matrix.cols(); }
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr Index cols() const noexcept { return m_matrix.rows(); }
|
|
|
|
/** \returns the nested expression */
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const internal::remove_all_t<MatrixTypeNested>& nestedExpression() const {
|
|
return m_matrix;
|
|
}
|
|
|
|
/** \returns the nested expression */
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::remove_reference_t<MatrixTypeNested>& nestedExpression() {
|
|
return m_matrix;
|
|
}
|
|
|
|
/** \internal */
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void resize(Index nrows, Index ncols) { m_matrix.resize(ncols, nrows); }
|
|
|
|
protected:
|
|
typename internal::ref_selector<MatrixType>::non_const_type m_matrix;
|
|
};
|
|
|
|
namespace internal {
|
|
|
|
template <typename MatrixType, bool HasDirectAccess = has_direct_access<MatrixType>::ret>
|
|
struct TransposeImpl_base {
|
|
typedef typename dense_xpr_base<Transpose<MatrixType> >::type type;
|
|
};
|
|
|
|
template <typename MatrixType>
|
|
struct TransposeImpl_base<MatrixType, false> {
|
|
typedef typename dense_xpr_base<Transpose<MatrixType> >::type type;
|
|
};
|
|
|
|
} // end namespace internal
|
|
|
|
// Generic API dispatcher
|
|
template <typename XprType, typename StorageKind>
|
|
class TransposeImpl : public internal::generic_xpr_base<Transpose<XprType> >::type {
|
|
public:
|
|
typedef typename internal::generic_xpr_base<Transpose<XprType> >::type Base;
|
|
};
|
|
|
|
template <typename MatrixType>
|
|
class TransposeImpl<MatrixType, Dense> : public internal::TransposeImpl_base<MatrixType>::type {
|
|
public:
|
|
typedef typename internal::TransposeImpl_base<MatrixType>::type Base;
|
|
using Base::coeffRef;
|
|
EIGEN_DENSE_PUBLIC_INTERFACE(Transpose<MatrixType>)
|
|
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(TransposeImpl)
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index innerStride() const { return derived().nestedExpression().innerStride(); }
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index outerStride() const { return derived().nestedExpression().outerStride(); }
|
|
|
|
typedef std::conditional_t<internal::is_lvalue<MatrixType>::value, Scalar, const Scalar> ScalarWithConstIfNotLvalue;
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr ScalarWithConstIfNotLvalue* data() {
|
|
return derived().nestedExpression().data();
|
|
}
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr const Scalar* data() const {
|
|
return derived().nestedExpression().data();
|
|
}
|
|
|
|
// FIXME: shall we keep the const version of coeffRef?
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& coeffRef(Index rowId, Index colId) const {
|
|
return derived().nestedExpression().coeffRef(colId, rowId);
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& coeffRef(Index index) const {
|
|
return derived().nestedExpression().coeffRef(index);
|
|
}
|
|
|
|
protected:
|
|
EIGEN_DEFAULT_EMPTY_CONSTRUCTOR_AND_DESTRUCTOR(TransposeImpl)
|
|
};
|
|
|
|
/** \returns an expression of the transpose of *this.
|
|
*
|
|
* Example: \include MatrixBase_transpose.cpp
|
|
* Output: \verbinclude MatrixBase_transpose.out
|
|
*
|
|
* \warning If you want to replace a matrix by its own transpose, do \b NOT do this:
|
|
* \code
|
|
* m = m.transpose(); // bug!!! caused by aliasing effect
|
|
* \endcode
|
|
* Instead, use the transposeInPlace() method:
|
|
* \code
|
|
* m.transposeInPlace();
|
|
* \endcode
|
|
* which gives Eigen good opportunities for optimization, or alternatively you can also do:
|
|
* \code
|
|
* m = m.transpose().eval();
|
|
* \endcode
|
|
*
|
|
* \sa transposeInPlace(), adjoint() */
|
|
template <typename Derived>
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename DenseBase<Derived>::TransposeReturnType DenseBase<Derived>::transpose() {
|
|
return TransposeReturnType(derived());
|
|
}
|
|
|
|
/** This is the const version of transpose().
|
|
*
|
|
* Make sure you read the warning for transpose() !
|
|
*
|
|
* \sa transposeInPlace(), adjoint() */
|
|
template <typename Derived>
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstTransposeReturnType
|
|
DenseBase<Derived>::transpose() const {
|
|
return ConstTransposeReturnType(derived());
|
|
}
|
|
|
|
/** \returns an expression of the adjoint (i.e. conjugate transpose) of *this.
|
|
*
|
|
* Example: \include MatrixBase_adjoint.cpp
|
|
* Output: \verbinclude MatrixBase_adjoint.out
|
|
*
|
|
* \warning If you want to replace a matrix by its own adjoint, do \b NOT do this:
|
|
* \code
|
|
* m = m.adjoint(); // bug!!! caused by aliasing effect
|
|
* \endcode
|
|
* Instead, use the adjointInPlace() method:
|
|
* \code
|
|
* m.adjointInPlace();
|
|
* \endcode
|
|
* which gives Eigen good opportunities for optimization, or alternatively you can also do:
|
|
* \code
|
|
* m = m.adjoint().eval();
|
|
* \endcode
|
|
*
|
|
* \sa adjointInPlace(), transpose(), conjugate(), class Transpose, class internal::scalar_conjugate_op */
|
|
template <typename Derived>
|
|
EIGEN_DEVICE_FUNC inline const typename MatrixBase<Derived>::AdjointReturnType MatrixBase<Derived>::adjoint() const {
|
|
return AdjointReturnType(this->transpose());
|
|
}
|
|
|
|
/***************************************************************************
|
|
* "in place" transpose implementation
|
|
***************************************************************************/
|
|
|
|
namespace internal {
|
|
|
|
template <typename MatrixType,
|
|
bool IsSquare = (MatrixType::RowsAtCompileTime == MatrixType::ColsAtCompileTime) &&
|
|
MatrixType::RowsAtCompileTime != Dynamic,
|
|
bool MatchPacketSize =
|
|
(int(MatrixType::RowsAtCompileTime) == int(internal::packet_traits<typename MatrixType::Scalar>::size)) &&
|
|
(internal::evaluator<MatrixType>::Flags & PacketAccessBit)>
|
|
struct inplace_transpose_selector;
|
|
|
|
template <typename MatrixType>
|
|
struct inplace_transpose_selector<MatrixType, true, false> { // square matrix
|
|
static void run(MatrixType& m) {
|
|
m.matrix().template triangularView<StrictlyUpper>().swap(
|
|
m.matrix().transpose().template triangularView<StrictlyUpper>());
|
|
}
|
|
};
|
|
|
|
template <typename MatrixType>
|
|
struct inplace_transpose_selector<MatrixType, true, true> { // PacketSize x PacketSize
|
|
static void run(MatrixType& m) {
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename internal::packet_traits<typename MatrixType::Scalar>::type Packet;
|
|
const Index PacketSize = internal::packet_traits<Scalar>::size;
|
|
const Index Alignment = internal::evaluator<MatrixType>::Alignment;
|
|
PacketBlock<Packet> A;
|
|
for (Index i = 0; i < PacketSize; ++i) A.packet[i] = m.template packetByOuterInner<Alignment>(i, 0);
|
|
internal::ptranspose(A);
|
|
for (Index i = 0; i < PacketSize; ++i)
|
|
m.template writePacket<Alignment>(m.rowIndexByOuterInner(i, 0), m.colIndexByOuterInner(i, 0), A.packet[i]);
|
|
}
|
|
};
|
|
|
|
template <typename MatrixType, Index Alignment>
|
|
void BlockedInPlaceTranspose(MatrixType& m) {
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename internal::packet_traits<typename MatrixType::Scalar>::type Packet;
|
|
const Index PacketSize = internal::packet_traits<Scalar>::size;
|
|
eigen_assert(m.rows() == m.cols());
|
|
int row_start = 0;
|
|
for (; row_start + PacketSize <= m.rows(); row_start += PacketSize) {
|
|
for (int col_start = row_start; col_start + PacketSize <= m.cols(); col_start += PacketSize) {
|
|
PacketBlock<Packet> A;
|
|
if (row_start == col_start) {
|
|
for (Index i = 0; i < PacketSize; ++i)
|
|
A.packet[i] = m.template packetByOuterInner<Alignment>(row_start + i, col_start);
|
|
internal::ptranspose(A);
|
|
for (Index i = 0; i < PacketSize; ++i)
|
|
m.template writePacket<Alignment>(m.rowIndexByOuterInner(row_start + i, col_start),
|
|
m.colIndexByOuterInner(row_start + i, col_start), A.packet[i]);
|
|
} else {
|
|
PacketBlock<Packet> B;
|
|
for (Index i = 0; i < PacketSize; ++i) {
|
|
A.packet[i] = m.template packetByOuterInner<Alignment>(row_start + i, col_start);
|
|
B.packet[i] = m.template packetByOuterInner<Alignment>(col_start + i, row_start);
|
|
}
|
|
internal::ptranspose(A);
|
|
internal::ptranspose(B);
|
|
for (Index i = 0; i < PacketSize; ++i) {
|
|
m.template writePacket<Alignment>(m.rowIndexByOuterInner(row_start + i, col_start),
|
|
m.colIndexByOuterInner(row_start + i, col_start), B.packet[i]);
|
|
m.template writePacket<Alignment>(m.rowIndexByOuterInner(col_start + i, row_start),
|
|
m.colIndexByOuterInner(col_start + i, row_start), A.packet[i]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
for (Index row = row_start; row < m.rows(); ++row) {
|
|
m.matrix().row(row).head(row).swap(m.matrix().col(row).head(row).transpose());
|
|
}
|
|
}
|
|
|
|
template <typename MatrixType, bool MatchPacketSize>
|
|
struct inplace_transpose_selector<MatrixType, false, MatchPacketSize> { // non square or dynamic matrix
|
|
static void run(MatrixType& m) {
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
if (m.rows() == m.cols()) {
|
|
const Index PacketSize = internal::packet_traits<Scalar>::size;
|
|
if (!NumTraits<Scalar>::IsComplex && m.rows() >= PacketSize) {
|
|
if ((m.rows() % PacketSize) == 0)
|
|
BlockedInPlaceTranspose<MatrixType, internal::evaluator<MatrixType>::Alignment>(m);
|
|
else
|
|
BlockedInPlaceTranspose<MatrixType, Unaligned>(m);
|
|
} else {
|
|
m.matrix().template triangularView<StrictlyUpper>().swap(
|
|
m.matrix().transpose().template triangularView<StrictlyUpper>());
|
|
}
|
|
} else {
|
|
m = m.transpose().eval();
|
|
}
|
|
}
|
|
};
|
|
|
|
} // end namespace internal
|
|
|
|
/** This is the "in place" version of transpose(): it replaces \c *this by its own transpose.
|
|
* Thus, doing
|
|
* \code
|
|
* m.transposeInPlace();
|
|
* \endcode
|
|
* has the same effect on m as doing
|
|
* \code
|
|
* m = m.transpose().eval();
|
|
* \endcode
|
|
* and is faster and also safer because in the latter line of code, forgetting the eval() results
|
|
* in a bug caused by \ref TopicAliasing "aliasing".
|
|
*
|
|
* Notice however that this method is only useful if you want to replace a matrix by its own transpose.
|
|
* If you just need the transpose of a matrix, use transpose().
|
|
*
|
|
* \note if the matrix is not square, then \c *this must be a resizable matrix.
|
|
* This excludes (non-square) fixed-size matrices, block-expressions and maps.
|
|
*
|
|
* \sa transpose(), adjoint(), adjointInPlace() */
|
|
template <typename Derived>
|
|
EIGEN_DEVICE_FUNC inline void DenseBase<Derived>::transposeInPlace() {
|
|
eigen_assert((rows() == cols() || (RowsAtCompileTime == Dynamic && ColsAtCompileTime == Dynamic)) &&
|
|
"transposeInPlace() called on a non-square non-resizable matrix");
|
|
internal::inplace_transpose_selector<Derived>::run(derived());
|
|
}
|
|
|
|
/***************************************************************************
|
|
* "in place" adjoint implementation
|
|
***************************************************************************/
|
|
|
|
/** This is the "in place" version of adjoint(): it replaces \c *this by its own transpose.
|
|
* Thus, doing
|
|
* \code
|
|
* m.adjointInPlace();
|
|
* \endcode
|
|
* has the same effect on m as doing
|
|
* \code
|
|
* m = m.adjoint().eval();
|
|
* \endcode
|
|
* and is faster and also safer because in the latter line of code, forgetting the eval() results
|
|
* in a bug caused by aliasing.
|
|
*
|
|
* Notice however that this method is only useful if you want to replace a matrix by its own adjoint.
|
|
* If you just need the adjoint of a matrix, use adjoint().
|
|
*
|
|
* \note if the matrix is not square, then \c *this must be a resizable matrix.
|
|
* This excludes (non-square) fixed-size matrices, block-expressions and maps.
|
|
*
|
|
* \sa transpose(), adjoint(), transposeInPlace() */
|
|
template <typename Derived>
|
|
EIGEN_DEVICE_FUNC inline void MatrixBase<Derived>::adjointInPlace() {
|
|
derived() = adjoint().eval();
|
|
}
|
|
|
|
#ifndef EIGEN_NO_DEBUG
|
|
|
|
// The following is to detect aliasing problems in most common cases.
|
|
|
|
namespace internal {
|
|
|
|
template <bool DestIsTransposed, typename OtherDerived>
|
|
struct check_transpose_aliasing_compile_time_selector {
|
|
enum { ret = bool(blas_traits<OtherDerived>::IsTransposed) != DestIsTransposed };
|
|
};
|
|
|
|
template <bool DestIsTransposed, typename BinOp, typename DerivedA, typename DerivedB>
|
|
struct check_transpose_aliasing_compile_time_selector<DestIsTransposed, CwiseBinaryOp<BinOp, DerivedA, DerivedB> > {
|
|
enum {
|
|
ret = bool(blas_traits<DerivedA>::IsTransposed) != DestIsTransposed ||
|
|
bool(blas_traits<DerivedB>::IsTransposed) != DestIsTransposed
|
|
};
|
|
};
|
|
|
|
template <typename Scalar, bool DestIsTransposed, typename OtherDerived>
|
|
struct check_transpose_aliasing_run_time_selector {
|
|
EIGEN_DEVICE_FUNC static bool run(const Scalar* dest, const OtherDerived& src) {
|
|
return (bool(blas_traits<OtherDerived>::IsTransposed) != DestIsTransposed) &&
|
|
(dest != 0 && dest == (const Scalar*)extract_data(src));
|
|
}
|
|
};
|
|
|
|
template <typename Scalar, bool DestIsTransposed, typename BinOp, typename DerivedA, typename DerivedB>
|
|
struct check_transpose_aliasing_run_time_selector<Scalar, DestIsTransposed, CwiseBinaryOp<BinOp, DerivedA, DerivedB> > {
|
|
EIGEN_DEVICE_FUNC static bool run(const Scalar* dest, const CwiseBinaryOp<BinOp, DerivedA, DerivedB>& src) {
|
|
return ((blas_traits<DerivedA>::IsTransposed != DestIsTransposed) &&
|
|
(dest != 0 && dest == (const Scalar*)extract_data(src.lhs()))) ||
|
|
((blas_traits<DerivedB>::IsTransposed != DestIsTransposed) &&
|
|
(dest != 0 && dest == (const Scalar*)extract_data(src.rhs())));
|
|
}
|
|
};
|
|
|
|
// the following selector, checkTransposeAliasing_impl, based on MightHaveTransposeAliasing,
|
|
// is because when the condition controlling the assert is known at compile time, ICC emits a warning.
|
|
// This is actually a good warning: in expressions that don't have any transposing, the condition is
|
|
// known at compile time to be false, and using that, we can avoid generating the code of the assert again
|
|
// and again for all these expressions that don't need it.
|
|
|
|
template <typename Derived, typename OtherDerived,
|
|
bool MightHaveTransposeAliasing =
|
|
check_transpose_aliasing_compile_time_selector<blas_traits<Derived>::IsTransposed, OtherDerived>::ret>
|
|
struct checkTransposeAliasing_impl {
|
|
EIGEN_DEVICE_FUNC static void run(const Derived& dst, const OtherDerived& other) {
|
|
eigen_assert(
|
|
(!check_transpose_aliasing_run_time_selector<typename Derived::Scalar, blas_traits<Derived>::IsTransposed,
|
|
OtherDerived>::run(extract_data(dst), other)) &&
|
|
"aliasing detected during transposition, use transposeInPlace() "
|
|
"or evaluate the rhs into a temporary using .eval()");
|
|
}
|
|
};
|
|
|
|
template <typename Derived, typename OtherDerived>
|
|
struct checkTransposeAliasing_impl<Derived, OtherDerived, false> {
|
|
EIGEN_DEVICE_FUNC static void run(const Derived&, const OtherDerived&) {}
|
|
};
|
|
|
|
template <typename Dst, typename Src>
|
|
EIGEN_DEVICE_FUNC inline void check_for_aliasing(const Dst& dst, const Src& src) {
|
|
if ((!Dst::IsVectorAtCompileTime) && dst.rows() > 1 && dst.cols() > 1)
|
|
internal::checkTransposeAliasing_impl<Dst, Src>::run(dst, src);
|
|
}
|
|
|
|
} // end namespace internal
|
|
|
|
#endif // EIGEN_NO_DEBUG
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_TRANSPOSE_H
|