mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-21 09:09:36 +08:00
420 lines
14 KiB
C++
420 lines
14 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#ifndef EIGEN_TRANSPOSE_H
|
|
#define EIGEN_TRANSPOSE_H
|
|
|
|
/** \class Transpose
|
|
* \ingroup Core_Module
|
|
*
|
|
* \brief Expression of the transpose of a matrix
|
|
*
|
|
* \param MatrixType the type of the object of which we are taking the transpose
|
|
*
|
|
* This class represents an expression of the transpose of a matrix.
|
|
* It is the return type of MatrixBase::transpose() and MatrixBase::adjoint()
|
|
* and most of the time this is the only way it is used.
|
|
*
|
|
* \sa MatrixBase::transpose(), MatrixBase::adjoint()
|
|
*/
|
|
|
|
namespace internal {
|
|
template<typename MatrixType>
|
|
struct traits<Transpose<MatrixType> > : traits<MatrixType>
|
|
{
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename nested<MatrixType>::type MatrixTypeNested;
|
|
typedef typename remove_reference<MatrixTypeNested>::type MatrixTypeNestedPlain;
|
|
typedef typename traits<MatrixType>::StorageKind StorageKind;
|
|
typedef typename traits<MatrixType>::XprKind XprKind;
|
|
enum {
|
|
RowsAtCompileTime = MatrixType::ColsAtCompileTime,
|
|
ColsAtCompileTime = MatrixType::RowsAtCompileTime,
|
|
MaxRowsAtCompileTime = MatrixType::MaxColsAtCompileTime,
|
|
MaxColsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
|
FlagsLvalueBit = is_lvalue<MatrixType>::value ? LvalueBit : 0,
|
|
Flags0 = MatrixTypeNestedPlain::Flags & ~(LvalueBit | NestByRefBit),
|
|
Flags1 = Flags0 | FlagsLvalueBit,
|
|
Flags = Flags1 ^ RowMajorBit,
|
|
CoeffReadCost = MatrixTypeNestedPlain::CoeffReadCost,
|
|
InnerStrideAtCompileTime = inner_stride_at_compile_time<MatrixType>::ret,
|
|
OuterStrideAtCompileTime = outer_stride_at_compile_time<MatrixType>::ret
|
|
};
|
|
};
|
|
}
|
|
|
|
template<typename MatrixType, typename StorageKind> class TransposeImpl;
|
|
|
|
template<typename MatrixType> class Transpose
|
|
: public TransposeImpl<MatrixType,typename internal::traits<MatrixType>::StorageKind>
|
|
{
|
|
public:
|
|
|
|
typedef typename TransposeImpl<MatrixType,typename internal::traits<MatrixType>::StorageKind>::Base Base;
|
|
EIGEN_GENERIC_PUBLIC_INTERFACE(Transpose)
|
|
|
|
inline Transpose(const MatrixType& matrix) : m_matrix(matrix) {}
|
|
|
|
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Transpose)
|
|
|
|
inline Index rows() const { return m_matrix.cols(); }
|
|
inline Index cols() const { return m_matrix.rows(); }
|
|
|
|
/** \returns the nested expression */
|
|
const typename internal::remove_all<typename MatrixType::Nested>::type&
|
|
nestedExpression() const { return m_matrix; }
|
|
|
|
/** \returns the nested expression */
|
|
typename internal::remove_all<typename MatrixType::Nested>::type&
|
|
nestedExpression() { return m_matrix.const_cast_derived(); }
|
|
|
|
protected:
|
|
const typename MatrixType::Nested m_matrix;
|
|
};
|
|
|
|
namespace internal {
|
|
|
|
template<typename MatrixType, bool HasDirectAccess = has_direct_access<MatrixType>::ret>
|
|
struct TransposeImpl_base
|
|
{
|
|
typedef typename dense_xpr_base<Transpose<MatrixType> >::type type;
|
|
};
|
|
|
|
template<typename MatrixType>
|
|
struct TransposeImpl_base<MatrixType, false>
|
|
{
|
|
typedef typename dense_xpr_base<Transpose<MatrixType> >::type type;
|
|
};
|
|
|
|
} // end namespace internal
|
|
|
|
template<typename MatrixType> class TransposeImpl<MatrixType,Dense>
|
|
: public internal::TransposeImpl_base<MatrixType>::type
|
|
{
|
|
public:
|
|
|
|
typedef typename internal::TransposeImpl_base<MatrixType>::type Base;
|
|
EIGEN_DENSE_PUBLIC_INTERFACE(Transpose<MatrixType>)
|
|
|
|
inline Index innerStride() const { return derived().nestedExpression().innerStride(); }
|
|
inline Index outerStride() const { return derived().nestedExpression().outerStride(); }
|
|
inline Scalar* data() { return derived().nestedExpression().data(); }
|
|
inline const Scalar* data() const { return derived().nestedExpression().data(); }
|
|
|
|
inline Scalar& coeffRef(Index row, Index col)
|
|
{
|
|
EIGEN_STATIC_ASSERT_LVALUE(MatrixType)
|
|
return derived().nestedExpression().const_cast_derived().coeffRef(col, row);
|
|
}
|
|
|
|
inline Scalar& coeffRef(Index index)
|
|
{
|
|
EIGEN_STATIC_ASSERT_LVALUE(MatrixType)
|
|
return derived().nestedExpression().const_cast_derived().coeffRef(index);
|
|
}
|
|
|
|
inline const Scalar& coeffRef(Index row, Index col) const
|
|
{
|
|
return derived().nestedExpression().coeffRef(col, row);
|
|
}
|
|
|
|
inline const Scalar& coeffRef(Index index) const
|
|
{
|
|
return derived().nestedExpression().coeffRef(index);
|
|
}
|
|
|
|
inline const CoeffReturnType coeff(Index row, Index col) const
|
|
{
|
|
return derived().nestedExpression().coeff(col, row);
|
|
}
|
|
|
|
inline const CoeffReturnType coeff(Index index) const
|
|
{
|
|
return derived().nestedExpression().coeff(index);
|
|
}
|
|
|
|
template<int LoadMode>
|
|
inline const PacketScalar packet(Index row, Index col) const
|
|
{
|
|
return derived().nestedExpression().template packet<LoadMode>(col, row);
|
|
}
|
|
|
|
template<int LoadMode>
|
|
inline void writePacket(Index row, Index col, const PacketScalar& x)
|
|
{
|
|
derived().nestedExpression().const_cast_derived().template writePacket<LoadMode>(col, row, x);
|
|
}
|
|
|
|
template<int LoadMode>
|
|
inline const PacketScalar packet(Index index) const
|
|
{
|
|
return derived().nestedExpression().template packet<LoadMode>(index);
|
|
}
|
|
|
|
template<int LoadMode>
|
|
inline void writePacket(Index index, const PacketScalar& x)
|
|
{
|
|
derived().nestedExpression().const_cast_derived().template writePacket<LoadMode>(index, x);
|
|
}
|
|
};
|
|
|
|
/** \returns an expression of the transpose of *this.
|
|
*
|
|
* Example: \include MatrixBase_transpose.cpp
|
|
* Output: \verbinclude MatrixBase_transpose.out
|
|
*
|
|
* \warning If you want to replace a matrix by its own transpose, do \b NOT do this:
|
|
* \code
|
|
* m = m.transpose(); // bug!!! caused by aliasing effect
|
|
* \endcode
|
|
* Instead, use the transposeInPlace() method:
|
|
* \code
|
|
* m.transposeInPlace();
|
|
* \endcode
|
|
* which gives Eigen good opportunities for optimization, or alternatively you can also do:
|
|
* \code
|
|
* m = m.transpose().eval();
|
|
* \endcode
|
|
*
|
|
* \sa transposeInPlace(), adjoint() */
|
|
template<typename Derived>
|
|
inline Transpose<Derived>
|
|
DenseBase<Derived>::transpose()
|
|
{
|
|
return derived();
|
|
}
|
|
|
|
/** This is the const version of transpose().
|
|
*
|
|
* Make sure you read the warning for transpose() !
|
|
*
|
|
* \sa transposeInPlace(), adjoint() */
|
|
template<typename Derived>
|
|
inline const typename DenseBase<Derived>::ConstTransposeReturnType
|
|
DenseBase<Derived>::transpose() const
|
|
{
|
|
return derived();
|
|
}
|
|
|
|
/** \returns an expression of the adjoint (i.e. conjugate transpose) of *this.
|
|
*
|
|
* Example: \include MatrixBase_adjoint.cpp
|
|
* Output: \verbinclude MatrixBase_adjoint.out
|
|
*
|
|
* \warning If you want to replace a matrix by its own adjoint, do \b NOT do this:
|
|
* \code
|
|
* m = m.adjoint(); // bug!!! caused by aliasing effect
|
|
* \endcode
|
|
* Instead, use the adjointInPlace() method:
|
|
* \code
|
|
* m.adjointInPlace();
|
|
* \endcode
|
|
* which gives Eigen good opportunities for optimization, or alternatively you can also do:
|
|
* \code
|
|
* m = m.adjoint().eval();
|
|
* \endcode
|
|
*
|
|
* \sa adjointInPlace(), transpose(), conjugate(), class Transpose, class internal::scalar_conjugate_op */
|
|
template<typename Derived>
|
|
inline const typename MatrixBase<Derived>::AdjointReturnType
|
|
MatrixBase<Derived>::adjoint() const
|
|
{
|
|
return this->transpose(); // in the complex case, the .conjugate() is be implicit here
|
|
// due to implicit conversion to return type
|
|
}
|
|
|
|
/***************************************************************************
|
|
* "in place" transpose implementation
|
|
***************************************************************************/
|
|
|
|
namespace internal {
|
|
|
|
template<typename MatrixType,
|
|
bool IsSquare = (MatrixType::RowsAtCompileTime == MatrixType::ColsAtCompileTime) && MatrixType::RowsAtCompileTime!=Dynamic>
|
|
struct inplace_transpose_selector;
|
|
|
|
template<typename MatrixType>
|
|
struct inplace_transpose_selector<MatrixType,true> { // square matrix
|
|
static void run(MatrixType& m) {
|
|
m.template triangularView<StrictlyUpper>().swap(m.transpose());
|
|
}
|
|
};
|
|
|
|
template<typename MatrixType>
|
|
struct inplace_transpose_selector<MatrixType,false> { // non square matrix
|
|
static void run(MatrixType& m) {
|
|
if (m.rows()==m.cols())
|
|
m.template triangularView<StrictlyUpper>().swap(m.transpose());
|
|
else
|
|
m = m.transpose().eval();
|
|
}
|
|
};
|
|
|
|
} // end namespace internal
|
|
|
|
/** This is the "in place" version of transpose(): it replaces \c *this by its own transpose.
|
|
* Thus, doing
|
|
* \code
|
|
* m.transposeInPlace();
|
|
* \endcode
|
|
* has the same effect on m as doing
|
|
* \code
|
|
* m = m.transpose().eval();
|
|
* \endcode
|
|
* and is faster and also safer because in the latter line of code, forgetting the eval() results
|
|
* in a bug caused by aliasing.
|
|
*
|
|
* Notice however that this method is only useful if you want to replace a matrix by its own transpose.
|
|
* If you just need the transpose of a matrix, use transpose().
|
|
*
|
|
* \note if the matrix is not square, then \c *this must be a resizable matrix.
|
|
*
|
|
* \sa transpose(), adjoint(), adjointInPlace() */
|
|
template<typename Derived>
|
|
inline void DenseBase<Derived>::transposeInPlace()
|
|
{
|
|
internal::inplace_transpose_selector<Derived>::run(derived());
|
|
}
|
|
|
|
/***************************************************************************
|
|
* "in place" adjoint implementation
|
|
***************************************************************************/
|
|
|
|
/** This is the "in place" version of adjoint(): it replaces \c *this by its own transpose.
|
|
* Thus, doing
|
|
* \code
|
|
* m.adjointInPlace();
|
|
* \endcode
|
|
* has the same effect on m as doing
|
|
* \code
|
|
* m = m.adjoint().eval();
|
|
* \endcode
|
|
* and is faster and also safer because in the latter line of code, forgetting the eval() results
|
|
* in a bug caused by aliasing.
|
|
*
|
|
* Notice however that this method is only useful if you want to replace a matrix by its own adjoint.
|
|
* If you just need the adjoint of a matrix, use adjoint().
|
|
*
|
|
* \note if the matrix is not square, then \c *this must be a resizable matrix.
|
|
*
|
|
* \sa transpose(), adjoint(), transposeInPlace() */
|
|
template<typename Derived>
|
|
inline void MatrixBase<Derived>::adjointInPlace()
|
|
{
|
|
derived() = adjoint().eval();
|
|
}
|
|
|
|
#ifndef EIGEN_NO_DEBUG
|
|
|
|
// The following is to detect aliasing problems in most common cases.
|
|
|
|
namespace internal {
|
|
|
|
template<typename BinOp,typename NestedXpr,typename Rhs>
|
|
struct blas_traits<SelfCwiseBinaryOp<BinOp,NestedXpr,Rhs> >
|
|
: blas_traits<NestedXpr>
|
|
{
|
|
typedef SelfCwiseBinaryOp<BinOp,NestedXpr,Rhs> XprType;
|
|
static inline const XprType extract(const XprType& x) { return x; }
|
|
};
|
|
|
|
template<bool DestIsTransposed, typename OtherDerived>
|
|
struct check_transpose_aliasing_compile_time_selector
|
|
{
|
|
enum { ret = blas_traits<OtherDerived>::IsTransposed != DestIsTransposed
|
|
};
|
|
};
|
|
|
|
template<bool DestIsTransposed, typename BinOp, typename DerivedA, typename DerivedB>
|
|
struct check_transpose_aliasing_compile_time_selector<DestIsTransposed,CwiseBinaryOp<BinOp,DerivedA,DerivedB> >
|
|
{
|
|
enum { ret = blas_traits<DerivedA>::IsTransposed != DestIsTransposed
|
|
|| blas_traits<DerivedB>::IsTransposed != DestIsTransposed
|
|
};
|
|
};
|
|
|
|
template<typename Scalar, bool DestIsTransposed, typename OtherDerived>
|
|
struct check_transpose_aliasing_run_time_selector
|
|
{
|
|
static bool run(const Scalar* dest, const OtherDerived& src)
|
|
{
|
|
return (blas_traits<OtherDerived>::IsTransposed != DestIsTransposed) && (dest!=0 && dest==(Scalar*)extract_data(src));
|
|
}
|
|
};
|
|
|
|
template<typename Scalar, bool DestIsTransposed, typename BinOp, typename DerivedA, typename DerivedB>
|
|
struct check_transpose_aliasing_run_time_selector<Scalar,DestIsTransposed,CwiseBinaryOp<BinOp,DerivedA,DerivedB> >
|
|
{
|
|
static bool run(const Scalar* dest, const CwiseBinaryOp<BinOp,DerivedA,DerivedB>& src)
|
|
{
|
|
return ((blas_traits<DerivedA>::IsTransposed != DestIsTransposed) && (dest!=0 && dest==(Scalar*)extract_data(src.lhs())))
|
|
|| ((blas_traits<DerivedB>::IsTransposed != DestIsTransposed) && (dest!=0 && dest==(Scalar*)extract_data(src.rhs())));
|
|
}
|
|
};
|
|
|
|
// the following selector, checkTransposeAliasing_impl, based on MightHaveTransposeAliasing,
|
|
// is because when the condition controlling the assert is known at compile time, ICC emits a warning.
|
|
// This is actually a good warning: in expressions that don't have any transposing, the condition is
|
|
// known at compile time to be false, and using that, we can avoid generating the code of the assert again
|
|
// and again for all these expressions that don't need it.
|
|
|
|
template<typename Derived, typename OtherDerived,
|
|
bool MightHaveTransposeAliasing
|
|
= check_transpose_aliasing_compile_time_selector
|
|
<blas_traits<Derived>::IsTransposed,OtherDerived>::ret
|
|
>
|
|
struct checkTransposeAliasing_impl
|
|
{
|
|
static void run(const Derived& dst, const OtherDerived& other)
|
|
{
|
|
eigen_assert((!check_transpose_aliasing_run_time_selector
|
|
<typename Derived::Scalar,blas_traits<Derived>::IsTransposed,OtherDerived>
|
|
::run(extract_data(dst), other))
|
|
&& "aliasing detected during tranposition, use transposeInPlace() "
|
|
"or evaluate the rhs into a temporary using .eval()");
|
|
|
|
}
|
|
};
|
|
|
|
template<typename Derived, typename OtherDerived>
|
|
struct checkTransposeAliasing_impl<Derived, OtherDerived, false>
|
|
{
|
|
static void run(const Derived&, const OtherDerived&)
|
|
{
|
|
}
|
|
};
|
|
|
|
} // end namespace internal
|
|
|
|
template<typename Derived>
|
|
template<typename OtherDerived>
|
|
void DenseBase<Derived>::checkTransposeAliasing(const OtherDerived& other) const
|
|
{
|
|
internal::checkTransposeAliasing_impl<Derived, OtherDerived>::run(derived(), other);
|
|
}
|
|
#endif
|
|
|
|
#endif // EIGEN_TRANSPOSE_H
|