mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-04 03:00:39 +08:00
477 lines
27 KiB
C++
477 lines
27 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Mehdi Goli Codeplay Software Ltd.
|
|
// Ralph Potter Codeplay Software Ltd.
|
|
// Luke Iwanski Codeplay Software Ltd.
|
|
// Contact: <eigen@codeplay.com>
|
|
// Copyright (C) 2016 Benoit Steiner <benoit.steiner.goog@gmail.com>
|
|
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_CXX11_TENSOR_TENSOR_CONVOLUTION_SYCL_H
|
|
#define EIGEN_CXX11_TENSOR_TENSOR_CONVOLUTION_SYCL_H
|
|
|
|
namespace Eigen {
|
|
|
|
/** \class TensorConvolution
|
|
* \ingroup CXX11_Tensor_Module
|
|
*
|
|
* \brief Tensor convolution class.
|
|
*
|
|
*
|
|
*/
|
|
template <typename CoeffReturnType, typename KernelType, typename HostExpr, typename FunctorExpr, typename Index,
|
|
typename InputDims, typename Kernel_accessor, typename Buffer_accessor, typename Local_accessor, typename TupleType>
|
|
struct EigenConvolutionKernel1D{
|
|
typedef typename TensorSycl::internal::createPlaceHolderExpression<HostExpr>::Type PlaceHolderExpr;
|
|
internal::IndexMapper<Index, InputDims, 1, Eigen::internal::traits<HostExpr>::Layout> indexMapper;
|
|
Kernel_accessor kernel_filter;
|
|
const size_t kernelSize, range_x, range_y;
|
|
Buffer_accessor buffer_acc;
|
|
Local_accessor local_acc;
|
|
FunctorExpr functors;
|
|
TupleType tuple_of_accessors;
|
|
EigenConvolutionKernel1D(internal::IndexMapper<Index, InputDims, 1, Eigen::internal::traits<HostExpr>::Layout> indexMapper_,
|
|
Kernel_accessor kernel_filter_, const size_t kernelSize_, const size_t range_x_, const size_t range_y_,
|
|
Buffer_accessor buffer_acc_, Local_accessor local_acc_, FunctorExpr functors_, TupleType tuple_of_accessors_)
|
|
:indexMapper(indexMapper_), kernel_filter(kernel_filter_), kernelSize(kernelSize_), range_x(range_x_), range_y(range_y_),
|
|
buffer_acc(buffer_acc_), local_acc(local_acc_), functors(functors_), tuple_of_accessors(tuple_of_accessors_) {}
|
|
|
|
void operator()(cl::sycl::nd_item<2> itemID) {
|
|
typedef typename TensorSycl::internal::ConvertToDeviceExpression<HostExpr>::Type DevExpr;
|
|
auto device_expr =TensorSycl::internal::createDeviceExpression<DevExpr, PlaceHolderExpr>(functors, tuple_of_accessors);
|
|
auto device_evaluator = Eigen::TensorEvaluator<DevExpr, Eigen::DefaultDevice>(device_expr.expr, Eigen::DefaultDevice());
|
|
|
|
auto buffer_ptr = ConvertToActualTypeSycl(CoeffReturnType, buffer_acc);
|
|
auto kernel_ptr = ConvertToActualTypeSycl(KernelType, kernel_filter);
|
|
|
|
const size_t num_x_input = (itemID.get_local_range()[0] +kernelSize -1); //the required row to be calculated for the for each plane in shered memory
|
|
const size_t plane_kernel_offset = itemID.get_local(1) * num_x_input;
|
|
const size_t first_input_start = itemID.get_group(0)*itemID.get_local_range()[0];
|
|
const size_t plane_tensor_offset =indexMapper.mapCudaInputPlaneToTensorInputOffset(itemID.get_global(1));
|
|
/// fill the shared memory
|
|
for (size_t i = itemID.get_local(0); i < num_x_input ; i += itemID.get_local_range()[0]) {
|
|
const size_t local_index = i + plane_kernel_offset ;
|
|
const size_t tensor_index = plane_tensor_offset + indexMapper.mapCudaInputKernelToTensorInputOffset(i + first_input_start);
|
|
if(((i + first_input_start) < (range_x +kernelSize-1)) && itemID.get_global(1)< range_y){
|
|
local_acc[local_index] = device_evaluator.coeff(tensor_index);
|
|
}
|
|
else local_acc[local_index]=0.0f;
|
|
}
|
|
|
|
itemID.barrier(cl::sycl::access::fence_space::local_space);
|
|
|
|
// calculate the convolution
|
|
const int first_output_start =itemID.get_group(0)*(itemID.get_local_range()[0]); // output start x
|
|
if(itemID.get_global(0)< range_x && itemID.get_global(1)< range_y){
|
|
CoeffReturnType result = static_cast<CoeffReturnType>(0);
|
|
const size_t index = plane_kernel_offset+ itemID.get_local(0);
|
|
for (size_t k = 0; k < kernelSize; ++k) {
|
|
result += (local_acc[k + index] * kernel_ptr[k]);
|
|
}
|
|
const size_t tensor_index = indexMapper.mapCudaOutputPlaneToTensorOutputOffset(itemID.get_global(1))
|
|
+indexMapper.mapCudaOutputKernelToTensorOutputOffset(itemID.get_local(0) + first_output_start);
|
|
buffer_ptr[tensor_index] = result;
|
|
}
|
|
}
|
|
};
|
|
|
|
|
|
template <typename CoeffReturnType, typename KernelType, typename HostExpr, typename FunctorExpr, typename Index,
|
|
typename InputDims, typename Kernel_accessor, typename Buffer_accessor, typename Local_accessor, typename TupleType>
|
|
struct EigenConvolutionKernel2D{
|
|
typedef typename TensorSycl::internal::createPlaceHolderExpression<HostExpr>::Type PlaceHolderExpr;
|
|
internal::IndexMapper<Index, InputDims, 2, Eigen::internal::traits<HostExpr>::Layout> indexMapper;
|
|
Kernel_accessor kernel_filter;
|
|
const size_t kernelSize_x, kernelSize_y, range_x, range_y , range_z;
|
|
Buffer_accessor buffer_acc;
|
|
Local_accessor local_acc;
|
|
FunctorExpr functors;
|
|
TupleType tuple_of_accessors;
|
|
EigenConvolutionKernel2D(internal::IndexMapper<Index, InputDims, 2, Eigen::internal::traits<HostExpr>::Layout> indexMapper_,
|
|
Kernel_accessor kernel_filter_, const size_t kernelSize_x_, const size_t kernelSize_y_ ,const size_t range_x_, const size_t range_y_, const size_t range_z_,
|
|
Buffer_accessor buffer_acc_, Local_accessor local_acc_, FunctorExpr functors_, TupleType tuple_of_accessors_)
|
|
:indexMapper(indexMapper_), kernel_filter(kernel_filter_), kernelSize_x(kernelSize_x_), kernelSize_y(kernelSize_y_), range_x(range_x_), range_y(range_y_), range_z(range_z_),
|
|
buffer_acc(buffer_acc_), local_acc(local_acc_), functors(functors_), tuple_of_accessors(tuple_of_accessors_) {}
|
|
|
|
void operator()(cl::sycl::nd_item<3> itemID) {
|
|
typedef typename TensorSycl::internal::ConvertToDeviceExpression<HostExpr>::Type DevExpr;
|
|
auto device_expr =TensorSycl::internal::createDeviceExpression<DevExpr, PlaceHolderExpr>(functors, tuple_of_accessors);
|
|
auto device_evaluator = Eigen::TensorEvaluator<DevExpr, Eigen::DefaultDevice>(device_expr.expr, Eigen::DefaultDevice());
|
|
|
|
auto buffer_ptr = ConvertToActualTypeSycl(CoeffReturnType, buffer_acc);
|
|
auto kernel_ptr = ConvertToActualTypeSycl(KernelType, kernel_filter);
|
|
const size_t num_x_input = (itemID.get_local_range()[0] +kernelSize_x -1); //the required row to be calculated for the for each plane in shered memory
|
|
const size_t num_y_input = (itemID.get_local_range()[1] +kernelSize_y -1); //the required row to be calculated for the for each plane in shered memory
|
|
const size_t plane_input_offset = indexMapper.mapCudaInputPlaneToTensorInputOffset(itemID.get_global(2));
|
|
const size_t plane_kernel_offset = itemID.get_local(2) * num_y_input;
|
|
|
|
/// fill the shared memory
|
|
const size_t first_x_input_start = itemID.get_group(0)*itemID.get_local_range()[0];
|
|
const size_t first_y_input_start = itemID.get_group(1)*itemID.get_local_range()[1];
|
|
for (size_t j = itemID.get_local(1); j < num_y_input; j += itemID.get_local_range()[1]) {
|
|
const size_t local_input_offset = num_x_input * (j + plane_kernel_offset);
|
|
for (size_t i = itemID.get_local(0); i < num_x_input ; i += itemID.get_local_range()[0]) {
|
|
const size_t local_index = i + local_input_offset;
|
|
const size_t tensor_index = plane_input_offset + indexMapper.mapCudaInputKernelToTensorInputOffset(i + first_x_input_start, j+ first_y_input_start );
|
|
if(((i + first_x_input_start) < (range_x +kernelSize_x-1)) &&((j + first_y_input_start) < (range_y +kernelSize_y-1)) && itemID.get_global(2)< range_z){
|
|
local_acc[local_index] = device_evaluator.coeff(tensor_index);
|
|
}
|
|
else local_acc[local_index]=0.0f;
|
|
}
|
|
}
|
|
|
|
itemID.barrier(cl::sycl::access::fence_space::local_space);
|
|
|
|
// calculate the convolution
|
|
const size_t fitst_x_output_start =itemID.get_group(0)*(itemID.get_local_range()[0]); // output start x
|
|
const size_t fitst_y_output_start =itemID.get_group(1)*(itemID.get_local_range()[1]); // output start y
|
|
if(itemID.get_global(0)< range_x && itemID.get_global(1)< range_y && itemID.get_global(2)< range_z){
|
|
CoeffReturnType result = static_cast<CoeffReturnType>(0);
|
|
for (size_t j = 0; j < kernelSize_y; j++) {
|
|
size_t kernel_offset =kernelSize_x * j;
|
|
const size_t index = (num_x_input*(plane_kernel_offset + j+ itemID.get_local(1))) + itemID.get_local(0);
|
|
for (size_t i = 0; i < kernelSize_x; i++) {
|
|
result += (local_acc[i + index] * kernel_ptr[i+kernel_offset]);
|
|
}
|
|
}
|
|
const size_t tensor_index = indexMapper.mapCudaOutputPlaneToTensorOutputOffset(itemID.get_global(2))
|
|
+indexMapper.mapCudaOutputKernelToTensorOutputOffset(itemID.get_local(0) + fitst_x_output_start, itemID.get_local(1) + fitst_y_output_start);
|
|
buffer_ptr[tensor_index] = result;
|
|
}
|
|
}
|
|
};
|
|
|
|
|
|
|
|
template <typename CoeffReturnType, typename KernelType, typename HostExpr, typename FunctorExpr, typename Index,
|
|
typename InputDims, typename Kernel_accessor, typename Buffer_accessor, typename Local_accessor, typename TupleType>
|
|
struct EigenConvolutionKernel3D{
|
|
typedef typename TensorSycl::internal::createPlaceHolderExpression<HostExpr>::Type PlaceHolderExpr;
|
|
internal::IndexMapper<Index, InputDims, 3, Eigen::internal::traits<HostExpr>::Layout> indexMapper;
|
|
Kernel_accessor kernel_filter;
|
|
const size_t kernelSize_x, kernelSize_y, kernelSize_z, range_x, range_y , range_z, numP;
|
|
Buffer_accessor buffer_acc;
|
|
Local_accessor local_acc;
|
|
FunctorExpr functors;
|
|
TupleType tuple_of_accessors;
|
|
EigenConvolutionKernel3D(internal::IndexMapper<Index, InputDims, 3, Eigen::internal::traits<HostExpr>::Layout> indexMapper_,
|
|
Kernel_accessor kernel_filter_, const size_t kernelSize_x_, const size_t kernelSize_y_ , const size_t kernelSize_z_ ,
|
|
const size_t range_x_, const size_t range_y_, const size_t range_z_, const size_t numP_,
|
|
Buffer_accessor buffer_acc_, Local_accessor local_acc_, FunctorExpr functors_, TupleType tuple_of_accessors_)
|
|
:indexMapper(indexMapper_), kernel_filter(kernel_filter_), kernelSize_x(kernelSize_x_), kernelSize_y(kernelSize_y_),
|
|
kernelSize_z(kernelSize_z_), range_x(range_x_), range_y(range_y_), range_z(range_z_), numP(numP_),
|
|
buffer_acc(buffer_acc_), local_acc(local_acc_), functors(functors_), tuple_of_accessors(tuple_of_accessors_) {}
|
|
|
|
void operator()(cl::sycl::nd_item<3> itemID) {
|
|
typedef typename TensorSycl::internal::ConvertToDeviceExpression<HostExpr>::Type DevExpr;
|
|
auto device_expr =TensorSycl::internal::createDeviceExpression<DevExpr, PlaceHolderExpr>(functors, tuple_of_accessors);
|
|
auto device_evaluator = Eigen::TensorEvaluator<DevExpr, Eigen::DefaultDevice>(device_expr.expr, Eigen::DefaultDevice());
|
|
|
|
auto buffer_ptr = ConvertToActualTypeSycl(CoeffReturnType, buffer_acc);
|
|
auto kernel_ptr = ConvertToActualTypeSycl(KernelType, kernel_filter);
|
|
const size_t num_x_input = (itemID.get_local_range()[0] +kernelSize_x -1); //the required row to be calculated for the for each plane in shered memory
|
|
const size_t num_y_input = (itemID.get_local_range()[1] +kernelSize_y -1); //the required row to be calculated for the for each plane in shered memory
|
|
const size_t num_z_input = (itemID.get_local_range()[2] +kernelSize_z -1); //the required row to be calculated for the for each plane in shered memory
|
|
const size_t first_x_input_start = itemID.get_group(0)*itemID.get_local_range()[0];
|
|
const size_t first_y_input_start = itemID.get_group(1)*itemID.get_local_range()[1];
|
|
const size_t first_z_input_start = itemID.get_group(2)*itemID.get_local_range()[2];
|
|
for(size_t p=0; p<numP; p++){
|
|
/// fill the shared memory
|
|
const size_t plane_input_offset = indexMapper.mapCudaInputPlaneToTensorInputOffset(p);
|
|
for (size_t k = itemID.get_local(2); k < num_z_input; k += itemID.get_local_range()[2]) {
|
|
for (size_t j = itemID.get_local(1); j < num_y_input; j += itemID.get_local_range()[1]) {
|
|
for (size_t i = itemID.get_local(0); i < num_x_input ; i += itemID.get_local_range()[0]) {
|
|
const size_t local_index = i + (num_x_input * (j + (num_y_input * k)));
|
|
const size_t tensor_index = plane_input_offset + indexMapper.mapCudaInputKernelToTensorInputOffset(i + first_x_input_start, j+ first_y_input_start , k+ first_z_input_start );
|
|
if(((i + first_x_input_start) < (range_x +kernelSize_x-1)) && ((j + first_y_input_start) < (range_y +kernelSize_y-1)) && ((k + first_z_input_start) < (range_z +kernelSize_z-1)) ){
|
|
local_acc[local_index] = device_evaluator.coeff(tensor_index);
|
|
}
|
|
else local_acc[local_index]=0.0f;
|
|
}
|
|
}
|
|
}
|
|
itemID.barrier(cl::sycl::access::fence_space::local_space);
|
|
|
|
// calculate the convolution
|
|
const size_t fitst_x_output_start =itemID.get_group(0)*(itemID.get_local_range()[0]); // x
|
|
const size_t fitst_y_output_start =itemID.get_group(1)*(itemID.get_local_range()[1]); // y
|
|
const size_t fitst_z_output_start =itemID.get_group(2)*(itemID.get_local_range()[2]); // z
|
|
|
|
if(itemID.get_global(0)< range_x && itemID.get_global(1)< range_y && itemID.get_global(2)< range_z){
|
|
CoeffReturnType result = static_cast<CoeffReturnType>(0);
|
|
for (size_t k = 0; k < kernelSize_z; k++) {
|
|
for (size_t j = 0; j < kernelSize_y; j++) {
|
|
for (size_t i = 0; i < kernelSize_x; i++) {
|
|
const size_t kernel_index =i + kernelSize_x * (j + kernelSize_y * k);
|
|
const size_t local_index = ((i+ itemID.get_local(0))+ num_x_input*((j+ itemID.get_local(1)) + num_y_input * (k+ itemID.get_local(2))));
|
|
result += (local_acc[local_index] * kernel_ptr[kernel_index]);
|
|
}
|
|
}
|
|
}
|
|
const size_t tensor_index = indexMapper.mapCudaOutputPlaneToTensorOutputOffset(p)
|
|
+indexMapper.mapCudaOutputKernelToTensorOutputOffset(itemID.get_local(0) + fitst_x_output_start, itemID.get_local(1) + fitst_y_output_start, itemID.get_local(2) + fitst_z_output_start );
|
|
buffer_ptr[tensor_index] = result;
|
|
}
|
|
|
|
itemID.barrier(cl::sycl::access::fence_space::local_space);
|
|
}
|
|
}
|
|
};
|
|
|
|
|
|
template<typename Indices, typename InputArgType, typename KernelArgType>
|
|
struct TensorEvaluator<const TensorConvolutionOp<Indices, InputArgType, KernelArgType>, const Eigen::SyclDevice>
|
|
{
|
|
typedef TensorConvolutionOp<Indices, InputArgType, KernelArgType> XprType;
|
|
|
|
static const int NumDims = internal::array_size<typename TensorEvaluator<InputArgType, const Eigen::SyclDevice>::Dimensions>::value;
|
|
static const int NumKernelDims = internal::array_size<Indices>::value;
|
|
typedef typename XprType::Index Index;
|
|
typedef DSizes<Index, NumDims> Dimensions;
|
|
typedef typename TensorEvaluator<KernelArgType, const Eigen::SyclDevice>::Dimensions KernelDimensions;
|
|
typedef const Eigen::SyclDevice Device;
|
|
|
|
enum {
|
|
IsAligned = TensorEvaluator<InputArgType, const Eigen::SyclDevice>::IsAligned & TensorEvaluator<KernelArgType, const Eigen::SyclDevice>::IsAligned,
|
|
PacketAccess = false,
|
|
Layout = TensorEvaluator<InputArgType, const Eigen::SyclDevice>::Layout,
|
|
CoordAccess = false, // to be implemented
|
|
RawAccess = false
|
|
};
|
|
|
|
EIGEN_DEVICE_FUNC TensorEvaluator(const XprType& op, const Eigen::SyclDevice& device)
|
|
: m_inputImpl(op.inputExpression(), device), m_kernelArg(op.kernelExpression()), m_kernelImpl(op.kernelExpression(), device), m_indices(op.indices()), m_buf(NULL), m_kernel(NULL), m_local_kernel(false), m_device(device)
|
|
{
|
|
EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<InputArgType, const Eigen::SyclDevice>::Layout) == static_cast<int>(TensorEvaluator<KernelArgType, const Eigen::SyclDevice>::Layout)), YOU_MADE_A_PROGRAMMING_MISTAKE);
|
|
|
|
const typename TensorEvaluator<InputArgType, const Eigen::SyclDevice>::Dimensions& input_dims = m_inputImpl.dimensions();
|
|
const typename TensorEvaluator<KernelArgType, const Eigen::SyclDevice>::Dimensions& kernel_dims = m_kernelImpl.dimensions();
|
|
|
|
m_dimensions = m_inputImpl.dimensions();
|
|
for (int i = 0; i < NumKernelDims; ++i) {
|
|
const Index index = op.indices()[i];
|
|
const Index input_dim = input_dims[index];
|
|
const Index kernel_dim = kernel_dims[i];
|
|
const Index result_dim = input_dim - kernel_dim + 1;
|
|
m_dimensions[index] = result_dim;
|
|
}
|
|
}
|
|
|
|
typedef typename XprType::CoeffReturnType CoeffReturnType;
|
|
typedef typename PacketType<CoeffReturnType, const Eigen::SyclDevice>::type PacketReturnType;
|
|
typedef typename InputArgType::Scalar Scalar;
|
|
static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
|
|
|
|
EIGEN_DEVICE_FUNC const Dimensions& dimensions() const { return m_dimensions; }
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* data) {
|
|
preloadKernel();
|
|
m_inputImpl.evalSubExprsIfNeeded(NULL);
|
|
if (data) {
|
|
executeEval(data);
|
|
return false;
|
|
} else {
|
|
m_buf = (Scalar*)m_device.allocate(dimensions().TotalSize() * sizeof(Scalar));
|
|
executeEval(m_buf);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
|
|
m_inputImpl.cleanup();
|
|
if (m_buf) {
|
|
m_device.deallocate(m_buf);
|
|
m_buf = NULL;
|
|
}
|
|
if (m_local_kernel) {
|
|
m_device.deallocate((void*)m_kernel);
|
|
m_local_kernel = false;
|
|
}
|
|
m_kernel = NULL;
|
|
}
|
|
/// used by sycl in order to build the sycl buffer
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Device& device() const{return m_device;}
|
|
/// used by sycl in order to build the sycl buffer
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType* data() const { return m_buf; }
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void preloadKernel() {
|
|
// Don't make a local copy of the kernel unless we have to (i.e. it's an
|
|
// expression that needs to be evaluated)
|
|
const Scalar* in_place = m_kernelImpl.data();
|
|
if (in_place) {
|
|
m_kernel = in_place;
|
|
m_local_kernel = false;
|
|
} else {
|
|
size_t kernel_sz = m_kernelImpl.dimensions().TotalSize() * sizeof(Scalar);
|
|
Scalar* local = (Scalar*)m_device.allocate(kernel_sz);
|
|
typedef TensorEvalToOp<const KernelArgType> EvalTo;
|
|
EvalTo evalToTmp(local, m_kernelArg);
|
|
const bool PacketAccess = internal::IsVectorizable<const Eigen::SyclDevice, KernelArgType>::value;
|
|
internal::TensorExecutor<const EvalTo, const Eigen::SyclDevice, PacketAccess>::run(evalToTmp, m_device);
|
|
m_kernel = local;
|
|
m_local_kernel = true;
|
|
}
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void executeEval(Scalar* data) const {
|
|
typedef TensorEvaluator<InputArgType, const Eigen::SyclDevice> InputEvaluator;
|
|
typedef typename InputEvaluator::Dimensions InputDims;
|
|
|
|
typedef Eigen::TensorSycl::internal::FunctorExtractor<InputEvaluator> InputFunctorExpr;
|
|
// extract input functor list
|
|
InputFunctorExpr input_functors = Eigen::TensorSycl::internal::extractFunctors(m_inputImpl);
|
|
|
|
|
|
m_device.sycl_queue().submit([&](cl::sycl::handler &cgh) {
|
|
|
|
typedef cl::sycl::accessor<CoeffReturnType, 1, cl::sycl::access::mode::read_write, cl::sycl::access::target::local> InputLocalAcc;
|
|
/// work-around for gcc 4.8 auto bug
|
|
typedef decltype(Eigen::TensorSycl::internal::createTupleOfAccessors<InputEvaluator>(cgh, m_inputImpl)) InputTupleType;
|
|
// create input tuple of accessors
|
|
InputTupleType tuple_of_accessors = Eigen::TensorSycl::internal::createTupleOfAccessors<InputEvaluator>(cgh, m_inputImpl);
|
|
|
|
typedef cl::sycl::accessor<uint8_t, 1, cl::sycl::access::mode::discard_write, cl::sycl::access::target::global_buffer> OutputAccessorType;
|
|
OutputAccessorType out_res= m_device. template get_sycl_accessor<cl::sycl::access::mode::discard_write>(cgh, data);
|
|
typedef cl::sycl::accessor<uint8_t, 1, cl::sycl::access::mode::read, cl::sycl::access::target::global_buffer> KernelAccessorType;
|
|
KernelAccessorType kernel_acc= m_device. template get_sycl_accessor<cl::sycl::access::mode::read>(cgh, m_kernel);
|
|
|
|
switch (NumKernelDims) {
|
|
case 1: {
|
|
const size_t numX = dimensions()[m_indices[0]];
|
|
const size_t numP = dimensions().TotalSize() / numX;
|
|
const size_t kernel_size = m_kernelImpl.dimensions().TotalSize();
|
|
size_t range_x, GRange_x, tileSize_x, range_y, GRange_y, tileSize_y;
|
|
m_device.parallel_for_setup(numX, numP, tileSize_x,tileSize_y,range_x,range_y, GRange_x, GRange_y );
|
|
const size_t shared_mem =(tileSize_x +kernel_size -1)*(tileSize_y);
|
|
assert(static_cast<unsigned long>(shared_mem) <= m_device.sharedMemPerBlock());
|
|
auto global_range=cl::sycl::range<2>(GRange_x, GRange_y); // global range
|
|
auto local_range=cl::sycl::range<2>(tileSize_x, tileSize_y); // local range
|
|
InputLocalAcc local_acc(cl::sycl::range<1>(shared_mem), cgh);
|
|
const array<Index, 1> indices{m_indices[0]};
|
|
const array<Index, 1> kernel_dims{{m_kernelImpl.dimensions()[0]}};
|
|
internal::IndexMapper<Index, InputDims, 1, Layout> indexMapper(m_inputImpl.dimensions(), kernel_dims, indices);
|
|
cgh.parallel_for(cl::sycl::nd_range<2>(global_range, local_range),
|
|
EigenConvolutionKernel1D<CoeffReturnType, Scalar, InputArgType, InputFunctorExpr, Index,
|
|
InputDims, KernelAccessorType, OutputAccessorType, InputLocalAcc, InputTupleType>(
|
|
indexMapper,kernel_acc, kernel_size, numX, numP, out_res, local_acc, input_functors, tuple_of_accessors));
|
|
break;
|
|
}
|
|
|
|
case 2: {
|
|
const size_t idxX =static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : 1;
|
|
const size_t idxY =static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 1 : 0;
|
|
const size_t kernel_size_x = m_kernelImpl.dimensions()[idxX];
|
|
const size_t kernel_size_y = m_kernelImpl.dimensions()[idxY];
|
|
const size_t numX = dimensions()[m_indices[idxX]];
|
|
const size_t numY = dimensions()[m_indices[idxY]];
|
|
const size_t numP = dimensions().TotalSize() / (numX*numY);
|
|
size_t range_x, GRange_x, tileSize_x, range_y, GRange_y, tileSize_y, range_z, GRange_z, tileSize_z;
|
|
m_device.parallel_for_setup(numX, numY, numP, tileSize_x, tileSize_y, tileSize_z, range_x, range_y, range_z, GRange_x, GRange_y, GRange_z );
|
|
const size_t shared_mem =(tileSize_x +kernel_size_x -1)*(tileSize_y +kernel_size_y -1) * tileSize_z;
|
|
assert(static_cast<unsigned long>(shared_mem) <= m_device.sharedMemPerBlock());
|
|
auto global_range=cl::sycl::range<3>(GRange_x, GRange_y, GRange_z); // global range
|
|
auto local_range=cl::sycl::range<3>(tileSize_x, tileSize_y, tileSize_z); // local range
|
|
InputLocalAcc local_acc(cl::sycl::range<1>(shared_mem), cgh);
|
|
const array<Index, 2> indices {{m_indices[idxX], m_indices[idxY]}};
|
|
const array<Index, 2> kernel_dims{{m_kernelImpl.dimensions()[idxX], m_kernelImpl.dimensions()[idxY]}};
|
|
internal::IndexMapper<Index, InputDims, 2, Layout> indexMapper(m_inputImpl.dimensions(), kernel_dims, indices);
|
|
cgh.parallel_for(cl::sycl::nd_range<3>(global_range, local_range),
|
|
EigenConvolutionKernel2D<CoeffReturnType, Scalar, InputArgType, InputFunctorExpr, Index,
|
|
InputDims, KernelAccessorType, OutputAccessorType, InputLocalAcc, InputTupleType>(
|
|
indexMapper,kernel_acc, kernel_size_x, kernel_size_y, numX, numY, numP, out_res, local_acc, input_functors, tuple_of_accessors));
|
|
break;
|
|
}
|
|
|
|
case 3: {
|
|
const size_t idxX =static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : 2;
|
|
const size_t idxY =static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 1 : 1;
|
|
const size_t idxZ =static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 2 : 0;
|
|
const size_t kernel_size_x = m_kernelImpl.dimensions()[idxX];
|
|
const size_t kernel_size_y = m_kernelImpl.dimensions()[idxY];
|
|
const size_t kernel_size_z = m_kernelImpl.dimensions()[idxZ];
|
|
const size_t numX = dimensions()[m_indices[idxX]];
|
|
const size_t numY = dimensions()[m_indices[idxY]];
|
|
const size_t numZ = dimensions()[m_indices[idxZ]];
|
|
const size_t numP = dimensions().TotalSize() / (numX*numY*numZ);
|
|
const array<Index, 3> indices{{m_indices[idxX], m_indices[idxY], m_indices[idxZ]}};
|
|
const array<Index, 3> kernel_dims{{m_kernelImpl.dimensions()[idxX],m_kernelImpl.dimensions()[idxY], m_kernelImpl.dimensions()[idxZ]}};
|
|
internal::IndexMapper<Index, InputDims, 3, Layout> indexMapper(m_inputImpl.dimensions(), kernel_dims, indices);
|
|
size_t range_x, GRange_x, tileSize_x, range_y, GRange_y, tileSize_y, range_z, GRange_z, tileSize_z;
|
|
m_device.parallel_for_setup(numX, numY, numZ, tileSize_x, tileSize_y, tileSize_z, range_x, range_y, range_z, GRange_x, GRange_y, GRange_z );
|
|
const size_t shared_mem =(tileSize_x +kernel_size_x -1)*(tileSize_y +kernel_size_y -1) * (tileSize_z +kernel_size_y -1);
|
|
assert(static_cast<unsigned long>(shared_mem) <= m_device.sharedMemPerBlock());
|
|
auto global_range=cl::sycl::range<3>(GRange_x, GRange_y, GRange_z); // global range
|
|
auto local_range=cl::sycl::range<3>(tileSize_x, tileSize_y, tileSize_z); // local range
|
|
InputLocalAcc local_acc(cl::sycl::range<1>(shared_mem), cgh);
|
|
cgh.parallel_for(cl::sycl::nd_range<3>(global_range, local_range),
|
|
EigenConvolutionKernel3D<CoeffReturnType, Scalar, InputArgType, InputFunctorExpr, Index,
|
|
InputDims, KernelAccessorType, OutputAccessorType, InputLocalAcc, InputTupleType>(
|
|
indexMapper,kernel_acc, kernel_size_x, kernel_size_y, kernel_size_z, numX, numY,
|
|
numZ, numP, out_res, local_acc, input_functors, tuple_of_accessors));
|
|
break;
|
|
}
|
|
|
|
default: {
|
|
EIGEN_STATIC_ASSERT((NumKernelDims >= 1 && NumKernelDims <= 3), THIS_METHOD_IS_ONLY_FOR_OBJECTS_OF_A_SPECIFIC_SIZE);
|
|
}
|
|
}
|
|
});
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
|
|
{
|
|
eigen_assert(m_buf);
|
|
eigen_assert(index < m_dimensions.TotalSize());
|
|
return m_buf[index];
|
|
}
|
|
|
|
template<int LoadMode>
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(const Index index) const
|
|
{
|
|
eigen_assert(m_buf);
|
|
eigen_assert(index < m_dimensions.TotalSize());
|
|
return internal::ploadt<PacketReturnType, LoadMode>(m_buf+index);
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
|
|
costPerCoeff(bool vectorized) const {
|
|
// TODO(rmlarsen): FIXME: For now, this is just a copy of the CPU cost
|
|
// model.
|
|
const double kernel_size = m_kernelImpl.dimensions().TotalSize();
|
|
// We ignore the use of fused multiply-add.
|
|
const double convolve_compute_cost =
|
|
TensorOpCost::AddCost<Scalar>() + TensorOpCost::MulCost<Scalar>();
|
|
const double firstIndex_compute_cost =
|
|
NumDims *
|
|
(2 * TensorOpCost::AddCost<Index>() + 2 * TensorOpCost::MulCost<Index>() +
|
|
TensorOpCost::DivCost<Index>());
|
|
return TensorOpCost(0, 0, firstIndex_compute_cost, vectorized, PacketSize) +
|
|
kernel_size * (m_inputImpl.costPerCoeff(vectorized) +
|
|
m_kernelImpl.costPerCoeff(vectorized) +
|
|
TensorOpCost(0, 0, convolve_compute_cost, vectorized,
|
|
PacketSize));
|
|
}
|
|
|
|
private:
|
|
// No assignment (copies are needed by the kernels)
|
|
TensorEvaluator& operator = (const TensorEvaluator&);
|
|
TensorEvaluator<InputArgType, const Eigen::SyclDevice> m_inputImpl;
|
|
KernelArgType m_kernelArg;
|
|
TensorEvaluator<KernelArgType, const Eigen::SyclDevice> m_kernelImpl;
|
|
Indices m_indices;
|
|
Dimensions m_dimensions;
|
|
Scalar* m_buf;
|
|
const Scalar* m_kernel;
|
|
bool m_local_kernel;
|
|
const Eigen::SyclDevice& m_device;
|
|
};
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_CXX11_TENSOR_TENSOR_CONVOLUTION_H
|