mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-05-16 01:38:05 +08:00
588 lines
21 KiB
C++
588 lines
21 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2009, 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#ifndef EIGEN_MATRIX_FUNCTION
|
|
#define EIGEN_MATRIX_FUNCTION
|
|
|
|
#include "StemFunction.h"
|
|
#include "MatrixFunctionAtomic.h"
|
|
|
|
|
|
/** \ingroup MatrixFunctions_Module
|
|
* \brief Class for computing matrix exponentials.
|
|
* \tparam MatrixType type of the argument of the matrix function,
|
|
* expected to be an instantiation of the Matrix class template.
|
|
*/
|
|
template <typename MatrixType, int IsComplex = NumTraits<typename ei_traits<MatrixType>::Scalar>::IsComplex>
|
|
class MatrixFunction
|
|
{
|
|
private:
|
|
|
|
typedef typename ei_traits<MatrixType>::Index Index;
|
|
typedef typename ei_traits<MatrixType>::Scalar Scalar;
|
|
typedef typename ei_stem_function<Scalar>::type StemFunction;
|
|
|
|
public:
|
|
|
|
/** \brief Constructor.
|
|
*
|
|
* \param[in] A argument of matrix function, should be a square matrix.
|
|
* \param[in] f an entire function; \c f(x,n) should compute the n-th derivative of f at x.
|
|
*
|
|
* The class stores a reference to \p A, so it should not be
|
|
* changed (or destroyed) before compute() is called.
|
|
*/
|
|
MatrixFunction(const MatrixType& A, StemFunction f);
|
|
|
|
/** \brief Compute the matrix function.
|
|
*
|
|
* \param[out] result the function \p f applied to \p A, as
|
|
* specified in the constructor.
|
|
*
|
|
* See MatrixBase::matrixFunction() for details on how this computation
|
|
* is implemented.
|
|
*/
|
|
template <typename ResultType>
|
|
void compute(ResultType &result);
|
|
};
|
|
|
|
|
|
/** \ingroup MatrixFunctions_Module
|
|
* \brief Partial specialization of MatrixFunction for real matrices \internal
|
|
*/
|
|
template <typename MatrixType>
|
|
class MatrixFunction<MatrixType, 0>
|
|
{
|
|
private:
|
|
|
|
typedef ei_traits<MatrixType> Traits;
|
|
typedef typename Traits::Scalar Scalar;
|
|
static const int Rows = Traits::RowsAtCompileTime;
|
|
static const int Cols = Traits::ColsAtCompileTime;
|
|
static const int Options = MatrixType::Options;
|
|
static const int MaxRows = Traits::MaxRowsAtCompileTime;
|
|
static const int MaxCols = Traits::MaxColsAtCompileTime;
|
|
|
|
typedef std::complex<Scalar> ComplexScalar;
|
|
typedef Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols> ComplexMatrix;
|
|
typedef typename ei_stem_function<Scalar>::type StemFunction;
|
|
|
|
public:
|
|
|
|
/** \brief Constructor.
|
|
*
|
|
* \param[in] A argument of matrix function, should be a square matrix.
|
|
* \param[in] f an entire function; \c f(x,n) should compute the n-th derivative of f at x.
|
|
*/
|
|
MatrixFunction(const MatrixType& A, StemFunction f) : m_A(A), m_f(f) { }
|
|
|
|
/** \brief Compute the matrix function.
|
|
*
|
|
* \param[out] result the function \p f applied to \p A, as
|
|
* specified in the constructor.
|
|
*
|
|
* This function converts the real matrix \c A to a complex matrix,
|
|
* uses MatrixFunction<MatrixType,1> and then converts the result back to
|
|
* a real matrix.
|
|
*/
|
|
template <typename ResultType>
|
|
void compute(ResultType& result)
|
|
{
|
|
ComplexMatrix CA = m_A.template cast<ComplexScalar>();
|
|
ComplexMatrix Cresult;
|
|
MatrixFunction<ComplexMatrix> mf(CA, m_f);
|
|
mf.compute(Cresult);
|
|
result = Cresult.real();
|
|
}
|
|
|
|
private:
|
|
const MatrixType& m_A; /**< \brief Reference to argument of matrix function. */
|
|
StemFunction *m_f; /**< \brief Stem function for matrix function under consideration */
|
|
|
|
MatrixFunction& operator=(const MatrixFunction&);
|
|
};
|
|
|
|
|
|
/** \ingroup MatrixFunctions_Module
|
|
* \brief Partial specialization of MatrixFunction for complex matrices \internal
|
|
*/
|
|
template <typename MatrixType>
|
|
class MatrixFunction<MatrixType, 1>
|
|
{
|
|
private:
|
|
|
|
typedef ei_traits<MatrixType> Traits;
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename MatrixType::Index Index;
|
|
static const int RowsAtCompileTime = Traits::RowsAtCompileTime;
|
|
static const int ColsAtCompileTime = Traits::ColsAtCompileTime;
|
|
static const int Options = MatrixType::Options;
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
typedef typename ei_stem_function<Scalar>::type StemFunction;
|
|
typedef Matrix<Scalar, Traits::RowsAtCompileTime, 1> VectorType;
|
|
typedef Matrix<Index, Traits::RowsAtCompileTime, 1> IntVectorType;
|
|
typedef Matrix<Index, Dynamic, 1> DynamicIntVectorType;
|
|
typedef std::list<Scalar> Cluster;
|
|
typedef std::list<Cluster> ListOfClusters;
|
|
typedef Matrix<Scalar, Dynamic, Dynamic, Options, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType;
|
|
|
|
public:
|
|
|
|
MatrixFunction(const MatrixType& A, StemFunction f);
|
|
template <typename ResultType> void compute(ResultType& result);
|
|
|
|
private:
|
|
|
|
void computeSchurDecomposition();
|
|
void partitionEigenvalues();
|
|
typename ListOfClusters::iterator findCluster(Scalar key);
|
|
void computeClusterSize();
|
|
void computeBlockStart();
|
|
void constructPermutation();
|
|
void permuteSchur();
|
|
void swapEntriesInSchur(Index index);
|
|
void computeBlockAtomic();
|
|
Block<MatrixType> block(const MatrixType& A, Index i, Index j);
|
|
void computeOffDiagonal();
|
|
DynMatrixType solveTriangularSylvester(const DynMatrixType& A, const DynMatrixType& B, const DynMatrixType& C);
|
|
|
|
const MatrixType& m_A; /**< \brief Reference to argument of matrix function. */
|
|
StemFunction *m_f; /**< \brief Stem function for matrix function under consideration */
|
|
MatrixType m_T; /**< \brief Triangular part of Schur decomposition */
|
|
MatrixType m_U; /**< \brief Unitary part of Schur decomposition */
|
|
MatrixType m_fT; /**< \brief %Matrix function applied to #m_T */
|
|
ListOfClusters m_clusters; /**< \brief Partition of eigenvalues into clusters of ei'vals "close" to each other */
|
|
DynamicIntVectorType m_eivalToCluster; /**< \brief m_eivalToCluster[i] = j means i-th ei'val is in j-th cluster */
|
|
DynamicIntVectorType m_clusterSize; /**< \brief Number of eigenvalues in each clusters */
|
|
DynamicIntVectorType m_blockStart; /**< \brief Row index at which block corresponding to i-th cluster starts */
|
|
IntVectorType m_permutation; /**< \brief Permutation which groups ei'vals in the same cluster together */
|
|
|
|
/** \brief Maximum distance allowed between eigenvalues to be considered "close".
|
|
*
|
|
* This is morally a \c static \c const \c Scalar, but only
|
|
* integers can be static constant class members in C++. The
|
|
* separation constant is set to 0.1, a value taken from the
|
|
* paper by Davies and Higham. */
|
|
static const RealScalar separation() { return static_cast<RealScalar>(0.1); }
|
|
|
|
MatrixFunction& operator=(const MatrixFunction&);
|
|
};
|
|
|
|
/** \brief Constructor.
|
|
*
|
|
* \param[in] A argument of matrix function, should be a square matrix.
|
|
* \param[in] f an entire function; \c f(x,n) should compute the n-th derivative of f at x.
|
|
*/
|
|
template <typename MatrixType>
|
|
MatrixFunction<MatrixType,1>::MatrixFunction(const MatrixType& A, StemFunction f) :
|
|
m_A(A), m_f(f)
|
|
{
|
|
/* empty body */
|
|
}
|
|
|
|
/** \brief Compute the matrix function.
|
|
*
|
|
* \param[out] result the function \p f applied to \p A, as
|
|
* specified in the constructor.
|
|
*/
|
|
template <typename MatrixType>
|
|
template <typename ResultType>
|
|
void MatrixFunction<MatrixType,1>::compute(ResultType& result)
|
|
{
|
|
computeSchurDecomposition();
|
|
partitionEigenvalues();
|
|
computeClusterSize();
|
|
computeBlockStart();
|
|
constructPermutation();
|
|
permuteSchur();
|
|
computeBlockAtomic();
|
|
computeOffDiagonal();
|
|
result = m_U * m_fT * m_U.adjoint();
|
|
}
|
|
|
|
/** \brief Store the Schur decomposition of #m_A in #m_T and #m_U */
|
|
template <typename MatrixType>
|
|
void MatrixFunction<MatrixType,1>::computeSchurDecomposition()
|
|
{
|
|
const ComplexSchur<MatrixType> schurOfA(m_A);
|
|
m_T = schurOfA.matrixT();
|
|
m_U = schurOfA.matrixU();
|
|
}
|
|
|
|
/** \brief Partition eigenvalues in clusters of ei'vals close to each other
|
|
*
|
|
* This function computes #m_clusters. This is a partition of the
|
|
* eigenvalues of #m_T in clusters, such that
|
|
* # Any eigenvalue in a certain cluster is at most separation() away
|
|
* from another eigenvalue in the same cluster.
|
|
* # The distance between two eigenvalues in different clusters is
|
|
* more than separation().
|
|
* The implementation follows Algorithm 4.1 in the paper of Davies
|
|
* and Higham.
|
|
*/
|
|
template <typename MatrixType>
|
|
void MatrixFunction<MatrixType,1>::partitionEigenvalues()
|
|
{
|
|
const Index rows = m_T.rows();
|
|
VectorType diag = m_T.diagonal(); // contains eigenvalues of A
|
|
|
|
for (Index i=0; i<rows; ++i) {
|
|
// Find set containing diag(i), adding a new set if necessary
|
|
typename ListOfClusters::iterator qi = findCluster(diag(i));
|
|
if (qi == m_clusters.end()) {
|
|
Cluster l;
|
|
l.push_back(diag(i));
|
|
m_clusters.push_back(l);
|
|
qi = m_clusters.end();
|
|
--qi;
|
|
}
|
|
|
|
// Look for other element to add to the set
|
|
for (Index j=i+1; j<rows; ++j) {
|
|
if (ei_abs(diag(j) - diag(i)) <= separation() && std::find(qi->begin(), qi->end(), diag(j)) == qi->end()) {
|
|
typename ListOfClusters::iterator qj = findCluster(diag(j));
|
|
if (qj == m_clusters.end()) {
|
|
qi->push_back(diag(j));
|
|
} else {
|
|
qi->insert(qi->end(), qj->begin(), qj->end());
|
|
m_clusters.erase(qj);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/** \brief Find cluster in #m_clusters containing some value
|
|
* \param[in] key Value to find
|
|
* \returns Iterator to cluster containing \c key, or
|
|
* \c m_clusters.end() if no cluster in m_clusters contains \c key.
|
|
*/
|
|
template <typename MatrixType>
|
|
typename MatrixFunction<MatrixType,1>::ListOfClusters::iterator MatrixFunction<MatrixType,1>::findCluster(Scalar key)
|
|
{
|
|
typename Cluster::iterator j;
|
|
for (typename ListOfClusters::iterator i = m_clusters.begin(); i != m_clusters.end(); ++i) {
|
|
j = std::find(i->begin(), i->end(), key);
|
|
if (j != i->end())
|
|
return i;
|
|
}
|
|
return m_clusters.end();
|
|
}
|
|
|
|
/** \brief Compute #m_clusterSize and #m_eivalToCluster using #m_clusters */
|
|
template <typename MatrixType>
|
|
void MatrixFunction<MatrixType,1>::computeClusterSize()
|
|
{
|
|
const Index rows = m_T.rows();
|
|
VectorType diag = m_T.diagonal();
|
|
const Index numClusters = static_cast<Index>(m_clusters.size());
|
|
|
|
m_clusterSize.setZero(numClusters);
|
|
m_eivalToCluster.resize(rows);
|
|
Index clusterIndex = 0;
|
|
for (typename ListOfClusters::const_iterator cluster = m_clusters.begin(); cluster != m_clusters.end(); ++cluster) {
|
|
for (Index i = 0; i < diag.rows(); ++i) {
|
|
if (std::find(cluster->begin(), cluster->end(), diag(i)) != cluster->end()) {
|
|
++m_clusterSize[clusterIndex];
|
|
m_eivalToCluster[i] = clusterIndex;
|
|
}
|
|
}
|
|
++clusterIndex;
|
|
}
|
|
}
|
|
|
|
/** \brief Compute #m_blockStart using #m_clusterSize */
|
|
template <typename MatrixType>
|
|
void MatrixFunction<MatrixType,1>::computeBlockStart()
|
|
{
|
|
m_blockStart.resize(m_clusterSize.rows());
|
|
m_blockStart(0) = 0;
|
|
for (Index i = 1; i < m_clusterSize.rows(); i++) {
|
|
m_blockStart(i) = m_blockStart(i-1) + m_clusterSize(i-1);
|
|
}
|
|
}
|
|
|
|
/** \brief Compute #m_permutation using #m_eivalToCluster and #m_blockStart */
|
|
template <typename MatrixType>
|
|
void MatrixFunction<MatrixType,1>::constructPermutation()
|
|
{
|
|
DynamicIntVectorType indexNextEntry = m_blockStart;
|
|
m_permutation.resize(m_T.rows());
|
|
for (Index i = 0; i < m_T.rows(); i++) {
|
|
Index cluster = m_eivalToCluster[i];
|
|
m_permutation[i] = indexNextEntry[cluster];
|
|
++indexNextEntry[cluster];
|
|
}
|
|
}
|
|
|
|
/** \brief Permute Schur decomposition in #m_U and #m_T according to #m_permutation */
|
|
template <typename MatrixType>
|
|
void MatrixFunction<MatrixType,1>::permuteSchur()
|
|
{
|
|
IntVectorType p = m_permutation;
|
|
for (Index i = 0; i < p.rows() - 1; i++) {
|
|
Index j;
|
|
for (j = i; j < p.rows(); j++) {
|
|
if (p(j) == i) break;
|
|
}
|
|
ei_assert(p(j) == i);
|
|
for (Index k = j-1; k >= i; k--) {
|
|
swapEntriesInSchur(k);
|
|
std::swap(p.coeffRef(k), p.coeffRef(k+1));
|
|
}
|
|
}
|
|
}
|
|
|
|
/** \brief Swap rows \a index and \a index+1 in Schur decomposition in #m_U and #m_T */
|
|
template <typename MatrixType>
|
|
void MatrixFunction<MatrixType,1>::swapEntriesInSchur(Index index)
|
|
{
|
|
PlanarRotation<Scalar> rotation;
|
|
rotation.makeGivens(m_T(index, index+1), m_T(index+1, index+1) - m_T(index, index));
|
|
m_T.applyOnTheLeft(index, index+1, rotation.adjoint());
|
|
m_T.applyOnTheRight(index, index+1, rotation);
|
|
m_U.applyOnTheRight(index, index+1, rotation);
|
|
}
|
|
|
|
/** \brief Compute block diagonal part of #m_fT.
|
|
*
|
|
* This routine computes the matrix function #m_f applied to the block
|
|
* diagonal part of #m_T, with the blocking given by #m_blockStart. The
|
|
* result is stored in #m_fT. The off-diagonal parts of #m_fT are set
|
|
* to zero.
|
|
*/
|
|
template <typename MatrixType>
|
|
void MatrixFunction<MatrixType,1>::computeBlockAtomic()
|
|
{
|
|
m_fT.resize(m_T.rows(), m_T.cols());
|
|
m_fT.setZero();
|
|
MatrixFunctionAtomic<DynMatrixType> mfa(m_f);
|
|
for (Index i = 0; i < m_clusterSize.rows(); ++i) {
|
|
block(m_fT, i, i) = mfa.compute(block(m_T, i, i));
|
|
}
|
|
}
|
|
|
|
/** \brief Return block of matrix according to blocking given by #m_blockStart */
|
|
template <typename MatrixType>
|
|
Block<MatrixType> MatrixFunction<MatrixType,1>::block(const MatrixType& A, Index i, Index j)
|
|
{
|
|
return A.block(m_blockStart(i), m_blockStart(j), m_clusterSize(i), m_clusterSize(j));
|
|
}
|
|
|
|
/** \brief Compute part of #m_fT above block diagonal.
|
|
*
|
|
* This routine assumes that the block diagonal part of #m_fT (which
|
|
* equals #m_f applied to #m_T) has already been computed and computes
|
|
* the part above the block diagonal. The part below the diagonal is
|
|
* zero, because #m_T is upper triangular.
|
|
*/
|
|
template <typename MatrixType>
|
|
void MatrixFunction<MatrixType,1>::computeOffDiagonal()
|
|
{
|
|
for (Index diagIndex = 1; diagIndex < m_clusterSize.rows(); diagIndex++) {
|
|
for (Index blockIndex = 0; blockIndex < m_clusterSize.rows() - diagIndex; blockIndex++) {
|
|
// compute (blockIndex, blockIndex+diagIndex) block
|
|
DynMatrixType A = block(m_T, blockIndex, blockIndex);
|
|
DynMatrixType B = -block(m_T, blockIndex+diagIndex, blockIndex+diagIndex);
|
|
DynMatrixType C = block(m_fT, blockIndex, blockIndex) * block(m_T, blockIndex, blockIndex+diagIndex);
|
|
C -= block(m_T, blockIndex, blockIndex+diagIndex) * block(m_fT, blockIndex+diagIndex, blockIndex+diagIndex);
|
|
for (Index k = blockIndex + 1; k < blockIndex + diagIndex; k++) {
|
|
C += block(m_fT, blockIndex, k) * block(m_T, k, blockIndex+diagIndex);
|
|
C -= block(m_T, blockIndex, k) * block(m_fT, k, blockIndex+diagIndex);
|
|
}
|
|
block(m_fT, blockIndex, blockIndex+diagIndex) = solveTriangularSylvester(A, B, C);
|
|
}
|
|
}
|
|
}
|
|
|
|
/** \brief Solve a triangular Sylvester equation AX + XB = C
|
|
*
|
|
* \param[in] A the matrix A; should be square and upper triangular
|
|
* \param[in] B the matrix B; should be square and upper triangular
|
|
* \param[in] C the matrix C; should have correct size.
|
|
*
|
|
* \returns the solution X.
|
|
*
|
|
* If A is m-by-m and B is n-by-n, then both C and X are m-by-n.
|
|
* The (i,j)-th component of the Sylvester equation is
|
|
* \f[
|
|
* \sum_{k=i}^m A_{ik} X_{kj} + \sum_{k=1}^j X_{ik} B_{kj} = C_{ij}.
|
|
* \f]
|
|
* This can be re-arranged to yield:
|
|
* \f[
|
|
* X_{ij} = \frac{1}{A_{ii} + B_{jj}} \Bigl( C_{ij}
|
|
* - \sum_{k=i+1}^m A_{ik} X_{kj} - \sum_{k=1}^{j-1} X_{ik} B_{kj} \Bigr).
|
|
* \f]
|
|
* It is assumed that A and B are such that the numerator is never
|
|
* zero (otherwise the Sylvester equation does not have a unique
|
|
* solution). In that case, these equations can be evaluated in the
|
|
* order \f$ i=m,\ldots,1 \f$ and \f$ j=1,\ldots,n \f$.
|
|
*/
|
|
template <typename MatrixType>
|
|
typename MatrixFunction<MatrixType,1>::DynMatrixType MatrixFunction<MatrixType,1>::solveTriangularSylvester(
|
|
const DynMatrixType& A,
|
|
const DynMatrixType& B,
|
|
const DynMatrixType& C)
|
|
{
|
|
ei_assert(A.rows() == A.cols());
|
|
ei_assert(A.isUpperTriangular());
|
|
ei_assert(B.rows() == B.cols());
|
|
ei_assert(B.isUpperTriangular());
|
|
ei_assert(C.rows() == A.rows());
|
|
ei_assert(C.cols() == B.rows());
|
|
|
|
Index m = A.rows();
|
|
Index n = B.rows();
|
|
DynMatrixType X(m, n);
|
|
|
|
for (Index i = m - 1; i >= 0; --i) {
|
|
for (Index j = 0; j < n; ++j) {
|
|
|
|
// Compute AX = \sum_{k=i+1}^m A_{ik} X_{kj}
|
|
Scalar AX;
|
|
if (i == m - 1) {
|
|
AX = 0;
|
|
} else {
|
|
Matrix<Scalar,1,1> AXmatrix = A.row(i).tail(m-1-i) * X.col(j).tail(m-1-i);
|
|
AX = AXmatrix(0,0);
|
|
}
|
|
|
|
// Compute XB = \sum_{k=1}^{j-1} X_{ik} B_{kj}
|
|
Scalar XB;
|
|
if (j == 0) {
|
|
XB = 0;
|
|
} else {
|
|
Matrix<Scalar,1,1> XBmatrix = X.row(i).head(j) * B.col(j).head(j);
|
|
XB = XBmatrix(0,0);
|
|
}
|
|
|
|
X(i,j) = (C(i,j) - AX - XB) / (A(i,i) + B(j,j));
|
|
}
|
|
}
|
|
return X;
|
|
}
|
|
|
|
/** \ingroup MatrixFunctions_Module
|
|
*
|
|
* \brief Proxy for the matrix function of some matrix (expression).
|
|
*
|
|
* \tparam Derived Type of the argument to the matrix function.
|
|
*
|
|
* This class holds the argument to the matrix function until it is
|
|
* assigned or evaluated for some other reason (so the argument
|
|
* should not be changed in the meantime). It is the return type of
|
|
* matrixBase::matrixFunction() and related functions and most of the
|
|
* time this is the only way it is used.
|
|
*/
|
|
template<typename Derived> class MatrixFunctionReturnValue
|
|
: public ReturnByValue<MatrixFunctionReturnValue<Derived> >
|
|
{
|
|
public:
|
|
|
|
typedef typename Derived::Scalar Scalar;
|
|
typedef typename Derived::Index Index;
|
|
typedef typename ei_stem_function<Scalar>::type StemFunction;
|
|
|
|
/** \brief Constructor.
|
|
*
|
|
* \param[in] A %Matrix (expression) forming the argument of the
|
|
* matrix function.
|
|
* \param[in] f Stem function for matrix function under consideration.
|
|
*/
|
|
MatrixFunctionReturnValue(const Derived& A, StemFunction f) : m_A(A), m_f(f) { }
|
|
|
|
/** \brief Compute the matrix function.
|
|
*
|
|
* \param[out] result \p f applied to \p A, where \p f and \p A
|
|
* are as in the constructor.
|
|
*/
|
|
template <typename ResultType>
|
|
inline void evalTo(ResultType& result) const
|
|
{
|
|
const typename ei_eval<Derived>::type Aevaluated = m_A.eval();
|
|
MatrixFunction<typename Derived::PlainObject> mf(Aevaluated, m_f);
|
|
mf.compute(result);
|
|
}
|
|
|
|
Index rows() const { return m_A.rows(); }
|
|
Index cols() const { return m_A.cols(); }
|
|
|
|
private:
|
|
const Derived& m_A;
|
|
StemFunction *m_f;
|
|
|
|
MatrixFunctionReturnValue& operator=(const MatrixFunctionReturnValue&);
|
|
};
|
|
|
|
template<typename Derived>
|
|
struct ei_traits<MatrixFunctionReturnValue<Derived> >
|
|
{
|
|
typedef typename Derived::PlainObject ReturnType;
|
|
};
|
|
|
|
|
|
/********** MatrixBase methods **********/
|
|
|
|
|
|
template <typename Derived>
|
|
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::matrixFunction(typename ei_stem_function<typename ei_traits<Derived>::Scalar>::type f) const
|
|
{
|
|
ei_assert(rows() == cols());
|
|
return MatrixFunctionReturnValue<Derived>(derived(), f);
|
|
}
|
|
|
|
template <typename Derived>
|
|
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sin() const
|
|
{
|
|
ei_assert(rows() == cols());
|
|
typedef typename ei_stem_function<Scalar>::ComplexScalar ComplexScalar;
|
|
return MatrixFunctionReturnValue<Derived>(derived(), StdStemFunctions<ComplexScalar>::sin);
|
|
}
|
|
|
|
template <typename Derived>
|
|
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cos() const
|
|
{
|
|
ei_assert(rows() == cols());
|
|
typedef typename ei_stem_function<Scalar>::ComplexScalar ComplexScalar;
|
|
return MatrixFunctionReturnValue<Derived>(derived(), StdStemFunctions<ComplexScalar>::cos);
|
|
}
|
|
|
|
template <typename Derived>
|
|
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sinh() const
|
|
{
|
|
ei_assert(rows() == cols());
|
|
typedef typename ei_stem_function<Scalar>::ComplexScalar ComplexScalar;
|
|
return MatrixFunctionReturnValue<Derived>(derived(), StdStemFunctions<ComplexScalar>::sinh);
|
|
}
|
|
|
|
template <typename Derived>
|
|
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cosh() const
|
|
{
|
|
ei_assert(rows() == cols());
|
|
typedef typename ei_stem_function<Scalar>::ComplexScalar ComplexScalar;
|
|
return MatrixFunctionReturnValue<Derived>(derived(), StdStemFunctions<ComplexScalar>::cosh);
|
|
}
|
|
|
|
#endif // EIGEN_MATRIX_FUNCTION
|