mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-07-20 03:44:26 +08:00
821 lines
32 KiB
C++
821 lines
32 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_H
|
|
#define EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_H
|
|
|
|
namespace Eigen {
|
|
|
|
/** \class TensorReduction
|
|
* \ingroup CXX11_Tensor_Module
|
|
*
|
|
* \brief Tensor reduction class.
|
|
*
|
|
*/
|
|
|
|
namespace internal {
|
|
template<typename Op, typename Dims, typename XprType>
|
|
struct traits<TensorReductionOp<Op, Dims, XprType> >
|
|
: traits<XprType>
|
|
{
|
|
typedef typename traits<XprType>::Scalar Scalar;
|
|
typedef typename internal::packet_traits<Scalar>::type Packet;
|
|
typedef typename traits<XprType>::StorageKind StorageKind;
|
|
typedef typename traits<XprType>::Index Index;
|
|
typedef typename XprType::Nested Nested;
|
|
};
|
|
|
|
template<typename Op, typename Dims, typename XprType>
|
|
struct eval<TensorReductionOp<Op, Dims, XprType>, Eigen::Dense>
|
|
{
|
|
typedef const TensorReductionOp<Op, Dims, XprType>& type;
|
|
};
|
|
|
|
template<typename Op, typename Dims, typename XprType>
|
|
struct nested<TensorReductionOp<Op, Dims, XprType>, 1, typename eval<TensorReductionOp<Op, Dims, XprType> >::type>
|
|
{
|
|
typedef TensorReductionOp<Op, Dims, XprType> type;
|
|
};
|
|
|
|
|
|
template <typename OutputDims> struct DimInitializer {
|
|
template <typename InputDims, typename ReducedDims> EIGEN_DEVICE_FUNC
|
|
static void run(const InputDims& input_dims,
|
|
const array<bool, internal::array_size<InputDims>::value>& reduced,
|
|
OutputDims* output_dims, ReducedDims* reduced_dims) {
|
|
const int NumInputDims = internal::array_size<InputDims>::value;
|
|
int outputIndex = 0;
|
|
int reduceIndex = 0;
|
|
for (int i = 0; i < NumInputDims; ++i) {
|
|
if (reduced[i]) {
|
|
(*reduced_dims)[reduceIndex] = input_dims[i];
|
|
++reduceIndex;
|
|
} else {
|
|
(*output_dims)[outputIndex] = input_dims[i];
|
|
++outputIndex;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
template <> struct DimInitializer<Sizes<1> > {
|
|
template <typename InputDims, typename Index, size_t Rank> EIGEN_DEVICE_FUNC
|
|
static void run(const InputDims& input_dims, const array<bool, Rank>&,
|
|
Sizes<1>*, array<Index, Rank>* reduced_dims) {
|
|
const int NumInputDims = internal::array_size<InputDims>::value;
|
|
for (int i = 0; i < NumInputDims; ++i) {
|
|
(*reduced_dims)[i] = input_dims[i];
|
|
}
|
|
}
|
|
};
|
|
|
|
|
|
template <typename ReducedDims, int NumTensorDims, int Layout>
|
|
struct are_inner_most_dims {
|
|
static const bool value = false;
|
|
};
|
|
template <typename ReducedDims, int NumTensorDims, int Layout>
|
|
struct preserve_inner_most_dims {
|
|
static const bool value = false;
|
|
};
|
|
|
|
#if defined(EIGEN_HAS_CONSTEXPR) && defined(EIGEN_HAS_VARIADIC_TEMPLATES)
|
|
template <typename ReducedDims, int NumTensorDims>
|
|
struct are_inner_most_dims<ReducedDims, NumTensorDims, ColMajor>{
|
|
static const bool tmp1 = indices_statically_known_to_increase<ReducedDims>()();
|
|
static const bool tmp2 = index_statically_eq<ReducedDims>()(0, 0);
|
|
static const bool tmp3 = index_statically_eq<ReducedDims>()(array_size<ReducedDims>::value-1, array_size<ReducedDims>::value-1);
|
|
static const bool value = tmp1 & tmp2 & tmp3;
|
|
};
|
|
template <typename ReducedDims, int NumTensorDims>
|
|
struct are_inner_most_dims<ReducedDims, NumTensorDims, RowMajor>{
|
|
static const bool tmp1 = indices_statically_known_to_increase<ReducedDims>()();
|
|
static const bool tmp2 = index_statically_eq<ReducedDims>()(0, NumTensorDims - array_size<ReducedDims>::value);
|
|
static const bool tmp3 = index_statically_eq<ReducedDims>()(array_size<ReducedDims>::value - 1, NumTensorDims - 1);
|
|
static const bool value = tmp1 & tmp2 & tmp3;
|
|
|
|
};
|
|
template <typename ReducedDims, int NumTensorDims>
|
|
struct preserve_inner_most_dims<ReducedDims, NumTensorDims, ColMajor>{
|
|
static const bool tmp1 = indices_statically_known_to_increase<ReducedDims>()();
|
|
static const bool tmp2 = index_statically_gt<ReducedDims>()(0, 0);
|
|
static const bool value = tmp1 & tmp2;
|
|
|
|
};
|
|
template <typename ReducedDims, int NumTensorDims>
|
|
struct preserve_inner_most_dims<ReducedDims, NumTensorDims, RowMajor>{
|
|
static const bool tmp1 = indices_statically_known_to_increase<ReducedDims>()();
|
|
static const bool tmp2 = index_statically_lt<ReducedDims>()(array_size<ReducedDims>::value - 1, NumTensorDims - 1);
|
|
static const bool value = tmp1 & tmp2;
|
|
};
|
|
#endif
|
|
|
|
|
|
template <int DimIndex, typename Self, typename Op>
|
|
struct GenericDimReducer {
|
|
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index firstIndex, Op& reducer, typename Self::CoeffReturnType* accum) {
|
|
EIGEN_STATIC_ASSERT(DimIndex > 0, YOU_MADE_A_PROGRAMMING_MISTAKE);
|
|
for (int j = 0; j < self.m_reducedDims[DimIndex]; ++j) {
|
|
const typename Self::Index input = firstIndex + j * self.m_reducedStrides[DimIndex];
|
|
GenericDimReducer<DimIndex-1, Self, Op>::reduce(self, input, reducer, accum);
|
|
}
|
|
}
|
|
};
|
|
template <typename Self, typename Op>
|
|
struct GenericDimReducer<0, Self, Op> {
|
|
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index firstIndex, Op& reducer, typename Self::CoeffReturnType* accum) {
|
|
for (int j = 0; j < self.m_reducedDims[0]; ++j) {
|
|
const typename Self::Index input = firstIndex + j * self.m_reducedStrides[0];
|
|
reducer.reduce(self.m_impl.coeff(input), accum);
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename Self, typename Op, bool Vectorizable = (Self::InputPacketAccess & Op::PacketAccess)>
|
|
struct InnerMostDimReducer {
|
|
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Self::CoeffReturnType reduce(const Self& self, typename Self::Index firstIndex, typename Self::Index numValuesToReduce, Op& reducer) {
|
|
typename Self::CoeffReturnType accum = reducer.initialize();
|
|
for (typename Self::Index j = 0; j < numValuesToReduce; ++j) {
|
|
reducer.reduce(self.m_impl.coeff(firstIndex + j), &accum);
|
|
}
|
|
return reducer.finalize(accum);
|
|
}
|
|
};
|
|
|
|
template <typename Self, typename Op>
|
|
struct InnerMostDimReducer<Self, Op, true> {
|
|
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Self::CoeffReturnType reduce(const Self& self, typename Self::Index firstIndex, typename Self::Index numValuesToReduce, Op& reducer) {
|
|
const int packetSize = internal::unpacket_traits<typename Self::PacketReturnType>::size;
|
|
const typename Self::Index VectorizedSize = (numValuesToReduce / packetSize) * packetSize;
|
|
typename Self::PacketReturnType p = reducer.template initializePacket<typename Self::PacketReturnType>();
|
|
for (typename Self::Index j = 0; j < VectorizedSize; j += packetSize) {
|
|
reducer.reducePacket(self.m_impl.template packet<Unaligned>(firstIndex + j), &p);
|
|
}
|
|
typename Self::CoeffReturnType accum = reducer.initialize();
|
|
for (typename Self::Index j = VectorizedSize; j < numValuesToReduce; ++j) {
|
|
reducer.reduce(self.m_impl.coeff(firstIndex + j), &accum);
|
|
}
|
|
return reducer.finalizeBoth(accum, p);
|
|
}
|
|
};
|
|
|
|
template <int DimIndex, typename Self, typename Op, bool vectorizable = (Self::InputPacketAccess & Op::PacketAccess)>
|
|
struct InnerMostDimPreserver {
|
|
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self&, typename Self::Index, Op&, typename Self::PacketReturnType*) {
|
|
eigen_assert(false && "should never be called");
|
|
}
|
|
};
|
|
|
|
template <int DimIndex, typename Self, typename Op>
|
|
struct InnerMostDimPreserver<DimIndex, Self, Op, true> {
|
|
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index firstIndex, Op& reducer, typename Self::PacketReturnType* accum) {
|
|
EIGEN_STATIC_ASSERT(DimIndex > 0, YOU_MADE_A_PROGRAMMING_MISTAKE);
|
|
for (typename Self::Index j = 0; j < self.m_reducedDims[DimIndex]; ++j) {
|
|
const typename Self::Index input = firstIndex + j * self.m_reducedStrides[DimIndex];
|
|
InnerMostDimPreserver<DimIndex-1, Self, Op>::reduce(self, input, reducer, accum);
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename Self, typename Op>
|
|
struct InnerMostDimPreserver<0, Self, Op, true> {
|
|
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index firstIndex, Op& reducer, typename Self::PacketReturnType* accum) {
|
|
for (typename Self::Index j = 0; j < self.m_reducedDims[0]; ++j) {
|
|
const typename Self::Index input = firstIndex + j * self.m_reducedStrides[0];
|
|
reducer.reducePacket(self.m_impl.template packet<Unaligned>(input), accum);
|
|
}
|
|
}
|
|
};
|
|
|
|
// Default full reducer
|
|
template <typename Self, typename Op, typename Device, bool Vectorizable = (Self::InputPacketAccess & Op::PacketAccess)>
|
|
struct FullReducer {
|
|
static const bool HasOptimizedImplementation = false;
|
|
|
|
static EIGEN_DEVICE_FUNC void run(const Self& self, Op& reducer, const Device&, typename Self::CoeffReturnType* output) {
|
|
const typename Self::Index num_coeffs = array_prod(self.m_impl.dimensions());
|
|
*output = InnerMostDimReducer<Self, Op>::reduce(self, 0, num_coeffs, reducer);
|
|
}
|
|
};
|
|
|
|
|
|
#ifdef EIGEN_USE_THREADS
|
|
// Multithreaded full reducers
|
|
template <typename Eval, typename Op, bool Vectorizable = (Eval::InputPacketAccess & Op::PacketAccess)>
|
|
struct FullReducerShard {
|
|
static void run(const Eval& eval, typename Eval::Index firstIndex, typename Eval::Index numValuesToReduce, Op& reducer, FullReducerShard* shard) {
|
|
|
|
shard->saccum = reducer.initialize();
|
|
for (typename Eval::Index j = 0; j < numValuesToReduce; ++j) {
|
|
reducer.reduce(eval.m_impl.coeff(firstIndex + j), &shard->saccum);
|
|
}
|
|
}
|
|
|
|
typename Eval::CoeffReturnType saccum;
|
|
};
|
|
|
|
template <typename Eval, typename Op>
|
|
struct FullReducerShard<Eval, Op, true> {
|
|
static void run(const Eval& eval, typename Eval::Index firstIndex, typename Eval::Index numValuesToReduce, Op& reducer, FullReducerShard* shard) {
|
|
|
|
const int packetSize = internal::unpacket_traits<typename Eval::PacketReturnType>::size;
|
|
const typename Eval::Index VectorizedSize = (numValuesToReduce / packetSize) * packetSize;
|
|
|
|
shard->paccum = reducer.template initializePacket<typename Eval::PacketReturnType>();
|
|
for (typename Eval::Index j = 0; j < VectorizedSize; j += packetSize) {
|
|
reducer.reducePacket(eval.m_impl.template packet<Unaligned>(firstIndex + j), &shard->paccum);
|
|
}
|
|
shard->saccum = reducer.initialize();
|
|
for (typename Eval::Index j = VectorizedSize; j < numValuesToReduce; ++j) {
|
|
reducer.reduce(eval.m_impl.coeff(firstIndex + j), &shard->saccum);
|
|
}
|
|
}
|
|
|
|
typename Eval::PacketReturnType paccum;
|
|
typename Eval::CoeffReturnType saccum;
|
|
};
|
|
|
|
|
|
template <typename Self, typename Op>
|
|
struct FullReducer<Self, Op, ThreadPoolDevice, false> {
|
|
static const bool HasOptimizedImplementation = !Op::IsStateful;
|
|
|
|
// launch one reducer per thread and accumulate the result.
|
|
static void run(const Self& self, Op& reducer, const ThreadPoolDevice& device, typename Self::CoeffReturnType* output) {
|
|
typedef typename Self::Index Index;
|
|
const Index num_coeffs = array_prod(self.m_impl.dimensions());
|
|
const Index blocksize = std::floor<Index>(static_cast<float>(num_coeffs)/device.numThreads());
|
|
const Index numblocks = blocksize > 0 ? num_coeffs / blocksize : 0;
|
|
eigen_assert(num_coeffs >= numblocks * blocksize);
|
|
|
|
std::vector<Notification*> results;
|
|
results.reserve(numblocks);
|
|
std::vector<FullReducerShard<Self, Op, false> > shards;
|
|
shards.resize(numblocks);
|
|
for (Index i = 0; i < numblocks; ++i) {
|
|
results.push_back(device.enqueue(&FullReducerShard<Self, Op, false>::run, self, i*blocksize, blocksize, reducer, &shards[i]));
|
|
}
|
|
|
|
FullReducerShard<Self, Op, false> finalShard;
|
|
if (numblocks * blocksize < num_coeffs) {
|
|
FullReducerShard<Self, Op, false>::run(self, numblocks * blocksize, num_coeffs - numblocks * blocksize, reducer, &finalShard);
|
|
} else {
|
|
finalShard.saccum = reducer.initialize();
|
|
}
|
|
|
|
for (Index i = 0; i < numblocks; ++i) {
|
|
wait_until_ready(results[i]);
|
|
delete results[i];
|
|
}
|
|
|
|
for (Index i = 0; i < numblocks; ++i) {
|
|
reducer.reduce(shards[i].saccum, &finalShard.saccum);
|
|
}
|
|
*output = reducer.finalize(finalShard.saccum);
|
|
}
|
|
};
|
|
|
|
template <typename Self, typename Op>
|
|
struct FullReducer<Self, Op, ThreadPoolDevice, true> {
|
|
static const bool HasOptimizedImplementation = !Op::IsStateful;
|
|
|
|
// launch one reducer per thread and accumulate the result.
|
|
static void run(const Self& self, Op& reducer, const ThreadPoolDevice& device, typename Self::CoeffReturnType* output) {
|
|
typedef typename Self::Index Index;
|
|
const Index num_coeffs = array_prod(self.m_impl.dimensions());
|
|
const Index blocksize = std::floor<Index>(static_cast<float>(num_coeffs)/device.numThreads());
|
|
const Index numblocks = blocksize > 0 ? num_coeffs / blocksize : 0;
|
|
eigen_assert(num_coeffs >= numblocks * blocksize);
|
|
|
|
std::vector<Notification*> results;
|
|
results.reserve(numblocks);
|
|
std::vector<FullReducerShard<Self, Op, true> > shards;
|
|
shards.resize(numblocks);
|
|
for (Index i = 0; i < numblocks; ++i) {
|
|
results.push_back(device.enqueue(&FullReducerShard<Self, Op, true>::run, self, i*blocksize, blocksize, reducer, &shards[i]));
|
|
}
|
|
|
|
FullReducerShard<Self, Op, true> finalShard;
|
|
if (numblocks * blocksize < num_coeffs) {
|
|
FullReducerShard<Self, Op, true>::run(self, numblocks * blocksize, num_coeffs - numblocks * blocksize, reducer, &finalShard);
|
|
} else {
|
|
finalShard.paccum = reducer.template initializePacket<typename Self::PacketReturnType>();
|
|
finalShard.saccum = reducer.initialize();
|
|
}
|
|
|
|
for (Index i = 0; i < numblocks; ++i) {
|
|
wait_until_ready(results[i]);
|
|
delete results[i];
|
|
}
|
|
|
|
for (Index i = 0; i < numblocks; ++i) {
|
|
reducer.reducePacket(shards[i].paccum, &finalShard.paccum);
|
|
reducer.reduce(shards[i].saccum, &finalShard.saccum);
|
|
}
|
|
|
|
*output = reducer.finalizeBoth(finalShard.saccum, finalShard.paccum);
|
|
}
|
|
};
|
|
#endif
|
|
|
|
|
|
#if defined(EIGEN_USE_GPU) && defined(__CUDACC__)
|
|
// Full reducers for GPU, don't vectorize for now
|
|
|
|
// Reducer function that enables multiple cuda thread to safely accumulate at the same
|
|
// output address. It basically reads the current value of the output variable, and
|
|
// attempts to update it with the new value. If in the meantime another cuda thread
|
|
// updated the content of the output address it will try again.
|
|
template <typename T, typename R>
|
|
__device__ EIGEN_ALWAYS_INLINE void atomicReduce(T* output, T accum, R& reducer) {
|
|
#if __CUDA_ARCH__ >= 300
|
|
if (sizeof(T) == 4)
|
|
{
|
|
unsigned int oldval = *reinterpret_cast<unsigned int*>(output);
|
|
unsigned int newval = oldval;
|
|
reducer.reduce(accum, reinterpret_cast<T*>(&newval));
|
|
if (newval == oldval) {
|
|
return;
|
|
}
|
|
unsigned int readback;
|
|
while ((readback = atomicCAS((unsigned int*)output, oldval, newval)) != oldval) {
|
|
oldval = readback;
|
|
newval = oldval;
|
|
reducer.reduce(accum, reinterpret_cast<T*>(&newval));
|
|
if (newval == oldval) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
else if (sizeof(T) == 8) {
|
|
unsigned long long oldval = *reinterpret_cast<unsigned long long*>(output);
|
|
unsigned long long newval = oldval;
|
|
reducer.reduce(accum, reinterpret_cast<T*>(&newval));
|
|
if (newval == oldval) {
|
|
return;
|
|
}
|
|
unsigned long long readback;
|
|
while ((readback = atomicCAS((unsigned long long*)output, oldval, newval)) != oldval) {
|
|
oldval = readback;
|
|
newval = oldval;
|
|
reducer.reduce(accum, reinterpret_cast<T*>(&newval));
|
|
if (newval == oldval) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
assert(0 && "Wordsize not supported");
|
|
}
|
|
#else
|
|
assert(0 && "Shouldn't be called on unsupported device");
|
|
#endif
|
|
}
|
|
|
|
template <typename T>
|
|
__device__ inline void atomicReduce(T* output, T accum, SumReducer<T>&) {
|
|
#if __CUDA_ARCH__ >= 300
|
|
atomicAdd(output, accum);
|
|
#else
|
|
assert(0 && "Shouldn't be called on unsupported device");
|
|
#endif
|
|
}
|
|
|
|
template <int BlockSize, int NumPerThread, typename Self,
|
|
typename Reducer, typename Index>
|
|
__global__ void FullReductionKernel(Reducer reducer, const Self input, Index num_coeffs,
|
|
typename Self::CoeffReturnType* output) {
|
|
const Index first_index = blockIdx.x * BlockSize * NumPerThread + threadIdx.x;
|
|
|
|
if (first_index == 0) {
|
|
*output = reducer.initialize();
|
|
}
|
|
|
|
typename Self::CoeffReturnType accum = reducer.initialize();
|
|
for (Index i = 0; i < NumPerThread; ++i) {
|
|
const Index index = first_index + i * BlockSize;
|
|
if (index >= num_coeffs) {
|
|
break;
|
|
}
|
|
typename Self::CoeffReturnType val = input.m_impl.coeff(index);
|
|
reducer.reduce(val, &accum);
|
|
}
|
|
|
|
for (int offset = warpSize/2; offset > 0; offset /= 2) {
|
|
reducer.reduce(__shfl_down(accum, offset), &accum);
|
|
}
|
|
|
|
if ((threadIdx.x & (warpSize - 1)) == 0) {
|
|
atomicReduce(output, accum, reducer);
|
|
}
|
|
}
|
|
|
|
|
|
template <typename Self, typename Op, bool Vectorizable>
|
|
struct FullReducer<Self, Op, GpuDevice, Vectorizable> {
|
|
// Unfortunately nvidia doesn't support well exotic types such as complex,
|
|
// so reduce the scope of the optimized version of the code to the simple case
|
|
// of floats.
|
|
static const bool HasOptimizedImplementation = !Op::IsStateful &&
|
|
internal::is_same<typename Self::CoeffReturnType, float>::value;
|
|
|
|
template <typename OutputType>
|
|
static void run(const Self& self, Op& reducer, const GpuDevice& device, OutputType* output) {
|
|
assert(false && "Should only be called on floats");
|
|
}
|
|
|
|
static void run(const Self& self, Op& reducer, const GpuDevice& device, float* output) {
|
|
typedef typename Self::Index Index;
|
|
|
|
const Index num_coeffs = array_prod(self.m_impl.dimensions());
|
|
const int block_size = 256;
|
|
const int num_per_thread = 128;
|
|
const int num_blocks = std::ceil(static_cast<float>(num_coeffs) / (block_size * num_per_thread));
|
|
LAUNCH_CUDA_KERNEL((FullReductionKernel<block_size, num_per_thread>),
|
|
num_blocks, block_size, 0, device, reducer, self, num_coeffs, output);
|
|
}
|
|
};
|
|
|
|
#endif
|
|
|
|
|
|
template <typename Self, typename Op,
|
|
bool Vectorizable = (Self::InputPacketAccess & Op::PacketAccess)>
|
|
class BlockReducer {
|
|
public:
|
|
typedef typename Self::Index Index;
|
|
typedef typename Self::Scalar Scalar;
|
|
typedef typename Self::CoeffReturnType CoeffReturnType;
|
|
explicit BlockReducer(const Op& reducer) : op_(reducer) {
|
|
accum_ = op_.initialize();
|
|
}
|
|
void Reduce(Index index, Index num_values_to_reduce, Scalar* data) {
|
|
for (Index i = 0; i < num_values_to_reduce; ++i) {
|
|
op_.reduce(data[index + i], &accum_);
|
|
}
|
|
}
|
|
CoeffReturnType Finalize() {
|
|
return op_.finalize(accum_);
|
|
}
|
|
|
|
private:
|
|
CoeffReturnType accum_;
|
|
Op op_;
|
|
};
|
|
|
|
|
|
template <typename Self, typename Op>
|
|
class BlockReducer<Self, Op, true> {
|
|
public:
|
|
typedef typename Self::Index Index;
|
|
typedef typename Self::Scalar Scalar;
|
|
typedef typename Self::CoeffReturnType CoeffReturnType;
|
|
typedef typename Self::PacketReturnType PacketReturnType;
|
|
explicit BlockReducer(const Op& reducer) : op_(reducer) {
|
|
vaccum_ = op_.template initializePacket<PacketReturnType>();
|
|
accum_ = op_.initialize();
|
|
}
|
|
void Reduce(Index index, Index num_values_to_reduce, Scalar* data) {
|
|
const int packet_size = internal::unpacket_traits<PacketReturnType>::size;
|
|
const typename Self::Index vectorized_size = (num_values_to_reduce /
|
|
packet_size) * packet_size;
|
|
for (typename Self::Index i = 0; i < vectorized_size; i += packet_size) {
|
|
op_.reducePacket(internal::ploadt<PacketReturnType, Unaligned>(
|
|
&data[index + i]), &vaccum_);
|
|
}
|
|
|
|
for (typename Self::Index i = vectorized_size;
|
|
i < num_values_to_reduce; ++i) {
|
|
op_.reduce(data[index + i], &accum_);
|
|
}
|
|
}
|
|
typename Self::CoeffReturnType Finalize() {
|
|
return op_.finalizeBoth(accum_, vaccum_);
|
|
}
|
|
|
|
private:
|
|
typename Self::PacketReturnType vaccum_;
|
|
typename Self::CoeffReturnType accum_;
|
|
Op op_;
|
|
};
|
|
|
|
} // end namespace internal
|
|
|
|
|
|
template <typename Op, typename Dims, typename XprType>
|
|
class TensorReductionOp : public TensorBase<TensorReductionOp<Op, Dims, XprType>, ReadOnlyAccessors> {
|
|
public:
|
|
typedef typename Eigen::internal::traits<TensorReductionOp>::Scalar Scalar;
|
|
typedef typename Eigen::internal::traits<TensorReductionOp>::Packet Packet;
|
|
typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
|
|
typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType;
|
|
typedef typename internal::remove_const<typename XprType::PacketReturnType>::type PacketReturnType;
|
|
typedef typename Eigen::internal::nested<TensorReductionOp>::type Nested;
|
|
typedef typename Eigen::internal::traits<TensorReductionOp>::StorageKind StorageKind;
|
|
typedef typename Eigen::internal::traits<TensorReductionOp>::Index Index;
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
|
TensorReductionOp(const XprType& expr, const Dims& dims) : m_expr(expr), m_dims(dims)
|
|
{ }
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
|
TensorReductionOp(const XprType& expr, const Dims& dims, const Op& reducer) : m_expr(expr), m_dims(dims), m_reducer(reducer)
|
|
{ }
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
|
const XprType& expression() const { return m_expr; }
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
|
const Dims& dims() const { return m_dims; }
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
|
const Op& reducer() const { return m_reducer; }
|
|
|
|
protected:
|
|
typename XprType::Nested m_expr;
|
|
const Dims m_dims;
|
|
const Op m_reducer;
|
|
};
|
|
|
|
|
|
// Eval as rvalue
|
|
template<typename Op, typename Dims, typename ArgType, typename Device>
|
|
struct TensorEvaluator<const TensorReductionOp<Op, Dims, ArgType>, Device>
|
|
{
|
|
typedef TensorReductionOp<Op, Dims, ArgType> XprType;
|
|
typedef typename XprType::Index Index;
|
|
typedef typename TensorEvaluator<ArgType, Device>::Dimensions InputDimensions;
|
|
static const int NumInputDims = internal::array_size<InputDimensions>::value;
|
|
static const int NumReducedDims = internal::array_size<Dims>::value;
|
|
static const int NumOutputDims = (NumInputDims==NumReducedDims) ? 1 : NumInputDims - NumReducedDims;
|
|
typedef typename internal::conditional<NumInputDims==NumReducedDims, Sizes<1>, DSizes<Index, NumOutputDims> >::type Dimensions;
|
|
typedef typename XprType::Scalar Scalar;
|
|
typedef TensorEvaluator<const TensorReductionOp<Op, Dims, ArgType>, Device> Self;
|
|
static const bool InputPacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess;
|
|
|
|
enum {
|
|
IsAligned = false,
|
|
PacketAccess = Self::InputPacketAccess && Op::PacketAccess,
|
|
Layout = TensorEvaluator<ArgType, Device>::Layout,
|
|
CoordAccess = false, // to be implemented
|
|
};
|
|
|
|
static const bool ReducingInnerMostDims = internal::are_inner_most_dims<Dims, NumInputDims, Layout>::value;
|
|
static const bool PreservingInnerMostDims = internal::preserve_inner_most_dims<Dims, NumInputDims, Layout>::value;
|
|
static const bool RunningFullReduction = (NumInputDims==NumReducedDims);
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
|
|
: m_impl(op.expression(), device), m_reducer(op.reducer()), m_result(NULL), m_device(device)
|
|
{
|
|
EIGEN_STATIC_ASSERT(NumInputDims >= NumReducedDims, YOU_MADE_A_PROGRAMMING_MISTAKE);
|
|
EIGEN_STATIC_ASSERT((!ReducingInnerMostDims | !PreservingInnerMostDims | (NumReducedDims == NumInputDims)),
|
|
YOU_MADE_A_PROGRAMMING_MISTAKE);
|
|
|
|
// Bitmap indicating if an input dimension is reduced or not.
|
|
array<bool, NumInputDims> reduced;
|
|
for (int i = 0; i < NumInputDims; ++i) {
|
|
reduced[i] = false;
|
|
}
|
|
for (int i = 0; i < NumReducedDims; ++i) {
|
|
eigen_assert(op.dims()[i] >= 0);
|
|
eigen_assert(op.dims()[i] < NumInputDims);
|
|
reduced[op.dims()[i]] = true;
|
|
}
|
|
|
|
const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
|
|
internal::DimInitializer<Dimensions>::run(input_dims, reduced, &m_dimensions, &m_reducedDims);
|
|
|
|
// Precompute output strides.
|
|
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
|
|
m_outputStrides[0] = 1;
|
|
for (int i = 1; i < NumOutputDims; ++i) {
|
|
m_outputStrides[i] = m_outputStrides[i - 1] * m_dimensions[i - 1];
|
|
}
|
|
} else {
|
|
m_outputStrides[NumOutputDims - 1] = 1;
|
|
for (int i = NumOutputDims - 2; i >= 0; --i) {
|
|
m_outputStrides[i] = m_outputStrides[i + 1] * m_dimensions[i + 1];
|
|
}
|
|
}
|
|
|
|
// Precompute input strides.
|
|
array<Index, NumInputDims> input_strides;
|
|
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
|
|
input_strides[0] = 1;
|
|
for (int i = 1; i < NumInputDims; ++i) {
|
|
input_strides[i] = input_strides[i-1] * input_dims[i-1];
|
|
}
|
|
} else {
|
|
input_strides[NumInputDims - 1] = 1;
|
|
for (int i = NumInputDims - 2; i >= 0; --i) {
|
|
input_strides[i] = input_strides[i + 1] * input_dims[i + 1];
|
|
}
|
|
}
|
|
|
|
int outputIndex = 0;
|
|
int reduceIndex = 0;
|
|
for (int i = 0; i < NumInputDims; ++i) {
|
|
if (reduced[i]) {
|
|
m_reducedStrides[reduceIndex] = input_strides[i];
|
|
++reduceIndex;
|
|
} else {
|
|
m_preservedStrides[outputIndex] = input_strides[i];
|
|
++outputIndex;
|
|
}
|
|
}
|
|
|
|
// Special case for full reductions
|
|
if (NumInputDims == NumReducedDims) {
|
|
eigen_assert(m_dimensions[0] == 1);
|
|
m_preservedStrides[0] = internal::array_prod(input_dims);
|
|
}
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
|
|
|
|
typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType;
|
|
typedef typename internal::remove_const<typename XprType::PacketReturnType>::type PacketReturnType;
|
|
|
|
EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType* data) {
|
|
m_impl.evalSubExprsIfNeeded(NULL);
|
|
|
|
// Use the FullReducer if possible.
|
|
if (RunningFullReduction && internal::FullReducer<Self, Op, Device>::HasOptimizedImplementation &&
|
|
((RunningOnGPU && (m_device.majorDeviceVersion() >= 3)) ||
|
|
(internal::array_prod(m_impl.dimensions()) > 1024 * 1024))) {
|
|
|
|
bool need_assign = false;
|
|
if (!data) {
|
|
m_result = static_cast<CoeffReturnType*>(m_device.allocate(sizeof(CoeffReturnType)));
|
|
data = m_result;
|
|
need_assign = true;
|
|
}
|
|
|
|
Op reducer(m_reducer);
|
|
internal::FullReducer<Self, Op, Device>::run(*this, reducer, m_device, data);
|
|
return need_assign;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
|
|
m_impl.cleanup();
|
|
if (m_result) {
|
|
m_device.deallocate(m_result);
|
|
}
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
|
|
{
|
|
if (RunningFullReduction && m_result) {
|
|
return *m_result;
|
|
}
|
|
Op reducer(m_reducer);
|
|
if (ReducingInnerMostDims) {
|
|
const Index num_values_to_reduce =
|
|
(static_cast<int>(Layout) == static_cast<int>(ColMajor)) ? m_preservedStrides[0] : m_preservedStrides[NumOutputDims - 1];
|
|
return internal::InnerMostDimReducer<Self, Op>::reduce(*this, firstInput(index),
|
|
num_values_to_reduce, reducer);
|
|
} else {
|
|
typename Self::CoeffReturnType accum = reducer.initialize();
|
|
internal::GenericDimReducer<NumReducedDims-1, Self, Op>::reduce(*this, firstInput(index), reducer, &accum);
|
|
return reducer.finalize(accum);
|
|
}
|
|
}
|
|
|
|
// TODO(bsteiner): provide a more efficient implementation.
|
|
template<int LoadMode>
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
|
|
{
|
|
const int packetSize = internal::unpacket_traits<PacketReturnType>::size;
|
|
EIGEN_STATIC_ASSERT(packetSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
|
|
eigen_assert(index + packetSize - 1 < dimensions().TotalSize());
|
|
|
|
EIGEN_ALIGN_DEFAULT typename internal::remove_const<CoeffReturnType>::type values[packetSize];
|
|
if (ReducingInnerMostDims) {
|
|
const Index num_values_to_reduce =
|
|
(static_cast<int>(Layout) == static_cast<int>(ColMajor)) ? m_preservedStrides[0] : m_preservedStrides[NumOutputDims - 1];
|
|
const Index firstIndex = firstInput(index);
|
|
for (Index i = 0; i < packetSize; ++i) {
|
|
Op reducer(m_reducer);
|
|
values[i] = internal::InnerMostDimReducer<Self, Op>::reduce(*this, firstIndex + i * num_values_to_reduce,
|
|
num_values_to_reduce, reducer);
|
|
}
|
|
} else if (PreservingInnerMostDims) {
|
|
const Index firstIndex = firstInput(index);
|
|
const int innermost_dim = (static_cast<int>(Layout) == static_cast<int>(ColMajor)) ? 0 : NumOutputDims - 1;
|
|
// TBD: extend this the the n innermost dimensions that we preserve.
|
|
if (((firstIndex % m_dimensions[innermost_dim]) + packetSize - 1) < m_dimensions[innermost_dim]) {
|
|
Op reducer(m_reducer);
|
|
typename Self::PacketReturnType accum = reducer.template initializePacket<typename Self::PacketReturnType>();
|
|
internal::InnerMostDimPreserver<NumReducedDims-1, Self, Op>::reduce(*this, firstIndex, reducer, &accum);
|
|
return reducer.finalizePacket(accum);
|
|
} else {
|
|
for (int i = 0; i < packetSize; ++i) {
|
|
values[i] = coeff(index + i);
|
|
}
|
|
}
|
|
} else {
|
|
for (int i = 0; i < packetSize; ++i) {
|
|
values[i] = coeff(index + i);
|
|
}
|
|
}
|
|
PacketReturnType rslt = internal::pload<PacketReturnType>(values);
|
|
return rslt;
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
|
|
|
|
private:
|
|
template <int, typename, typename> friend struct internal::GenericDimReducer;
|
|
template <typename, typename, bool> friend struct internal::InnerMostDimReducer;
|
|
template <int, typename, typename, bool> friend struct internal::InnerMostDimPreserver;
|
|
template <typename S, typename O, typename D, bool V> friend struct internal::FullReducer;
|
|
#ifdef EIGEN_USE_THREADS
|
|
template <typename S, typename O, bool V> friend struct internal::FullReducerShard;
|
|
#endif
|
|
#if defined(EIGEN_USE_GPU) && defined(__CUDACC__)
|
|
template <int B, int N, typename S, typename R, typename I> friend void internal::FullReductionKernel(R, const S, I, typename S::CoeffReturnType*);
|
|
#endif
|
|
|
|
// Returns the Index in the input tensor of the first value that needs to be
|
|
// used to compute the reduction at output index "index".
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index firstInput(Index index) const {
|
|
if (ReducingInnerMostDims) {
|
|
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
|
|
return index * m_preservedStrides[0];
|
|
} else {
|
|
return index * m_preservedStrides[NumOutputDims - 1];
|
|
}
|
|
}
|
|
// TBD: optimize the case where we preserve the innermost dimensions.
|
|
Index startInput = 0;
|
|
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
|
|
for (int i = NumOutputDims - 1; i > 0; --i) {
|
|
// This is index_i in the output tensor.
|
|
const Index idx = index / m_outputStrides[i];
|
|
startInput += idx * m_preservedStrides[i];
|
|
index -= idx * m_outputStrides[i];
|
|
}
|
|
if (PreservingInnerMostDims) {
|
|
eigen_assert(m_preservedStrides[0] == 1);
|
|
startInput += index;
|
|
} else {
|
|
startInput += index * m_preservedStrides[0];
|
|
}
|
|
} else {
|
|
for (int i = 0; i < NumOutputDims - 1; ++i) {
|
|
// This is index_i in the output tensor.
|
|
const Index idx = index / m_outputStrides[i];
|
|
startInput += idx * m_preservedStrides[i];
|
|
index -= idx * m_outputStrides[i];
|
|
}
|
|
if (PreservingInnerMostDims) {
|
|
eigen_assert(m_preservedStrides[NumOutputDims - 1] == 1);
|
|
startInput += index;
|
|
} else {
|
|
startInput += index * m_preservedStrides[NumOutputDims - 1];
|
|
}
|
|
}
|
|
return startInput;
|
|
}
|
|
|
|
// Dimensions of the output of the operation.
|
|
Dimensions m_dimensions;
|
|
// Precomputed strides for the output tensor.
|
|
array<Index, NumOutputDims> m_outputStrides;
|
|
// Subset of strides of the input tensor for the non-reduced dimensions.
|
|
// Indexed by output dimensions.
|
|
array<Index, NumOutputDims> m_preservedStrides;
|
|
|
|
// Subset of strides of the input tensor for the reduced dimensions.
|
|
// Indexed by reduced dimensions.
|
|
array<Index, NumReducedDims> m_reducedStrides;
|
|
// Size of the input dimensions that are reduced.
|
|
// Indexed by reduced dimensions.
|
|
array<Index, NumReducedDims> m_reducedDims;
|
|
|
|
// Evaluator for the input expression.
|
|
TensorEvaluator<ArgType, Device> m_impl;
|
|
|
|
// Operation to apply for computing the reduction.
|
|
Op m_reducer;
|
|
|
|
// For full reductions
|
|
#if defined(EIGEN_USE_GPU) && defined(__CUDACC__)
|
|
static const bool RunningOnGPU = internal::is_same<Device, Eigen::GpuDevice>::value;
|
|
#else
|
|
static const bool RunningOnGPU = false;
|
|
#endif
|
|
CoeffReturnType* m_result;
|
|
|
|
const Device& m_device;
|
|
};
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_H
|