mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-06-01 23:24:06 +08:00
486 lines
17 KiB
C++
486 lines
17 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
// Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#ifndef EIGEN_PARTIALLU_H
|
|
#define EIGEN_PARTIALLU_H
|
|
|
|
/** \ingroup LU_Module
|
|
*
|
|
* \class PartialPivLU
|
|
*
|
|
* \brief LU decomposition of a matrix with partial pivoting, and related features
|
|
*
|
|
* \param MatrixType the type of the matrix of which we are computing the LU decomposition
|
|
*
|
|
* This class represents a LU decomposition of a \b square \b invertible matrix, with partial pivoting: the matrix A
|
|
* is decomposed as A = PLU where L is unit-lower-triangular, U is upper-triangular, and P
|
|
* is a permutation matrix.
|
|
*
|
|
* Typically, partial pivoting LU decomposition is only considered numerically stable for square invertible
|
|
* matrices. Thus LAPACK's dgesv and dgesvx require the matrix to be square and invertible. The present class
|
|
* does the same. It will assert that the matrix is square, but it won't (actually it can't) check that the
|
|
* matrix is invertible: it is your task to check that you only use this decomposition on invertible matrices.
|
|
*
|
|
* The guaranteed safe alternative, working for all matrices, is the full pivoting LU decomposition, provided
|
|
* by class FullPivLU.
|
|
*
|
|
* This is \b not a rank-revealing LU decomposition. Many features are intentionally absent from this class,
|
|
* such as rank computation. If you need these features, use class FullPivLU.
|
|
*
|
|
* This LU decomposition is suitable to invert invertible matrices. It is what MatrixBase::inverse() uses
|
|
* in the general case.
|
|
* On the other hand, it is \b not suitable to determine whether a given matrix is invertible.
|
|
*
|
|
* The data of the LU decomposition can be directly accessed through the methods matrixLU(), permutationP().
|
|
*
|
|
* \sa MatrixBase::partialPivLu(), MatrixBase::determinant(), MatrixBase::inverse(), MatrixBase::computeInverse(), class FullPivLU
|
|
*/
|
|
template<typename _MatrixType> class PartialPivLU
|
|
{
|
|
public:
|
|
|
|
typedef _MatrixType MatrixType;
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
|
|
typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> PermutationVectorType;
|
|
typedef PermutationMatrix<MatrixType::RowsAtCompileTime> PermutationType;
|
|
|
|
enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN(
|
|
MatrixType::MaxColsAtCompileTime,
|
|
MatrixType::MaxRowsAtCompileTime)
|
|
};
|
|
|
|
/**
|
|
* \brief Default Constructor.
|
|
*
|
|
* The default constructor is useful in cases in which the user intends to
|
|
* perform decompositions via PartialPivLU::compute(const MatrixType&).
|
|
*/
|
|
PartialPivLU();
|
|
|
|
/** Constructor.
|
|
*
|
|
* \param matrix the matrix of which to compute the LU decomposition.
|
|
*
|
|
* \warning The matrix should have full rank (e.g. if it's square, it should be invertible).
|
|
* If you need to deal with non-full rank, use class FullPivLU instead.
|
|
*/
|
|
PartialPivLU(const MatrixType& matrix);
|
|
|
|
PartialPivLU& compute(const MatrixType& matrix);
|
|
|
|
/** \returns the LU decomposition matrix: the upper-triangular part is U, the
|
|
* unit-lower-triangular part is L (at least for square matrices; in the non-square
|
|
* case, special care is needed, see the documentation of class FullPivLU).
|
|
*
|
|
* \sa matrixL(), matrixU()
|
|
*/
|
|
inline const MatrixType& matrixLU() const
|
|
{
|
|
ei_assert(m_isInitialized && "PartialPivLU is not initialized.");
|
|
return m_lu;
|
|
}
|
|
|
|
/** \returns the permutation matrix P.
|
|
*/
|
|
inline const PermutationType& permutationP() const
|
|
{
|
|
ei_assert(m_isInitialized && "PartialPivLU is not initialized.");
|
|
return m_p;
|
|
}
|
|
|
|
/** This method returns the solution x to the equation Ax=b, where A is the matrix of which
|
|
* *this is the LU decomposition.
|
|
*
|
|
* \param b the right-hand-side of the equation to solve. Can be a vector or a matrix,
|
|
* the only requirement in order for the equation to make sense is that
|
|
* b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition.
|
|
*
|
|
* \returns the solution.
|
|
*
|
|
* Example: \include PartialPivLU_solve.cpp
|
|
* Output: \verbinclude PartialPivLU_solve.out
|
|
*
|
|
* Since this PartialPivLU class assumes anyway that the matrix A is invertible, the solution
|
|
* theoretically exists and is unique regardless of b.
|
|
*
|
|
* \sa TriangularView::solve(), inverse(), computeInverse()
|
|
*/
|
|
template<typename Rhs>
|
|
inline const ei_solve_retval<PartialPivLU, Rhs>
|
|
solve(const MatrixBase<Rhs>& b) const
|
|
{
|
|
ei_assert(m_isInitialized && "PartialPivLU is not initialized.");
|
|
return ei_solve_retval<PartialPivLU, Rhs>(*this, b.derived());
|
|
}
|
|
|
|
/** \returns the inverse of the matrix of which *this is the LU decomposition.
|
|
*
|
|
* \warning The matrix being decomposed here is assumed to be invertible. If you need to check for
|
|
* invertibility, use class FullPivLU instead.
|
|
*
|
|
* \sa MatrixBase::inverse(), LU::inverse()
|
|
*/
|
|
inline const ei_solve_retval<PartialPivLU,typename MatrixType::IdentityReturnType> inverse() const
|
|
{
|
|
ei_assert(m_isInitialized && "PartialPivLU is not initialized.");
|
|
return ei_solve_retval<PartialPivLU,typename MatrixType::IdentityReturnType>
|
|
(*this, MatrixType::Identity(m_lu.rows(), m_lu.cols()));
|
|
}
|
|
|
|
/** \returns the determinant of the matrix of which
|
|
* *this is the LU decomposition. It has only linear complexity
|
|
* (that is, O(n) where n is the dimension of the square matrix)
|
|
* as the LU decomposition has already been computed.
|
|
*
|
|
* \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers
|
|
* optimized paths.
|
|
*
|
|
* \warning a determinant can be very big or small, so for matrices
|
|
* of large enough dimension, there is a risk of overflow/underflow.
|
|
*
|
|
* \sa MatrixBase::determinant()
|
|
*/
|
|
typename ei_traits<MatrixType>::Scalar determinant() const;
|
|
|
|
MatrixType reconstructedMatrix() const;
|
|
|
|
inline int rows() const { return m_lu.rows(); }
|
|
inline int cols() const { return m_lu.cols(); }
|
|
|
|
protected:
|
|
MatrixType m_lu;
|
|
PermutationType m_p;
|
|
int m_det_p;
|
|
bool m_isInitialized;
|
|
};
|
|
|
|
template<typename MatrixType>
|
|
PartialPivLU<MatrixType>::PartialPivLU()
|
|
: m_lu(),
|
|
m_p(),
|
|
m_det_p(0),
|
|
m_isInitialized(false)
|
|
{
|
|
}
|
|
|
|
template<typename MatrixType>
|
|
PartialPivLU<MatrixType>::PartialPivLU(const MatrixType& matrix)
|
|
: m_lu(),
|
|
m_p(),
|
|
m_det_p(0),
|
|
m_isInitialized(false)
|
|
{
|
|
compute(matrix);
|
|
}
|
|
|
|
/** \internal This is the blocked version of ei_fullpivlu_unblocked() */
|
|
template<typename Scalar, int StorageOrder>
|
|
struct ei_partial_lu_impl
|
|
{
|
|
// FIXME add a stride to Map, so that the following mapping becomes easier,
|
|
// another option would be to create an expression being able to automatically
|
|
// warp any Map, Matrix, and Block expressions as a unique type, but since that's exactly
|
|
// a Map + stride, why not adding a stride to Map, and convenient ctors from a Matrix,
|
|
// and Block.
|
|
typedef Map<Matrix<Scalar, Dynamic, Dynamic, StorageOrder> > MapLU;
|
|
typedef Block<MapLU, Dynamic, Dynamic> MatrixType;
|
|
typedef Block<MatrixType,Dynamic,Dynamic> BlockType;
|
|
typedef typename MatrixType::RealScalar RealScalar;
|
|
|
|
/** \internal performs the LU decomposition in-place of the matrix \a lu
|
|
* using an unblocked algorithm.
|
|
*
|
|
* In addition, this function returns the row transpositions in the
|
|
* vector \a row_transpositions which must have a size equal to the number
|
|
* of columns of the matrix \a lu, and an integer \a nb_transpositions
|
|
* which returns the actual number of transpositions.
|
|
*
|
|
* \returns false if some pivot is exactly zero, in which case the matrix is left with
|
|
* undefined coefficients (to avoid generating inf/nan values). Returns true
|
|
* otherwise.
|
|
*/
|
|
static bool unblocked_lu(MatrixType& lu, int* row_transpositions, int& nb_transpositions)
|
|
{
|
|
const int rows = lu.rows();
|
|
const int size = std::min(lu.rows(),lu.cols());
|
|
nb_transpositions = 0;
|
|
for(int k = 0; k < size; ++k)
|
|
{
|
|
int row_of_biggest_in_col;
|
|
RealScalar biggest_in_corner
|
|
= lu.col(k).tail(rows-k).cwiseAbs().maxCoeff(&row_of_biggest_in_col);
|
|
row_of_biggest_in_col += k;
|
|
|
|
if(biggest_in_corner == 0) // the pivot is exactly zero: the matrix is singular
|
|
{
|
|
// end quickly, avoid generating inf/nan values. Although in this unblocked_lu case
|
|
// the result is still valid, there's no need to boast about it because
|
|
// the blocked_lu code can't guarantee the same.
|
|
// before exiting, make sure to initialize the still uninitialized row_transpositions
|
|
// in a sane state without destroying what we already have.
|
|
for(int i = k; i < size; i++)
|
|
row_transpositions[i] = i;
|
|
return false;
|
|
}
|
|
|
|
row_transpositions[k] = row_of_biggest_in_col;
|
|
|
|
if(k != row_of_biggest_in_col)
|
|
{
|
|
lu.row(k).swap(lu.row(row_of_biggest_in_col));
|
|
++nb_transpositions;
|
|
}
|
|
|
|
if(k<rows-1)
|
|
{
|
|
int rrows = rows-k-1;
|
|
int rsize = size-k-1;
|
|
lu.col(k).tail(rrows) /= lu.coeff(k,k);
|
|
lu.corner(BottomRight,rrows,rsize).noalias() -= lu.col(k).tail(rrows) * lu.row(k).tail(rsize);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/** \internal performs the LU decomposition in-place of the matrix represented
|
|
* by the variables \a rows, \a cols, \a lu_data, and \a lu_stride using a
|
|
* recursive, blocked algorithm.
|
|
*
|
|
* In addition, this function returns the row transpositions in the
|
|
* vector \a row_transpositions which must have a size equal to the number
|
|
* of columns of the matrix \a lu, and an integer \a nb_transpositions
|
|
* which returns the actual number of transpositions.
|
|
*
|
|
* \returns false if some pivot is exactly zero, in which case the matrix is left with
|
|
* undefined coefficients (to avoid generating inf/nan values). Returns true
|
|
* otherwise.
|
|
*
|
|
* \note This very low level interface using pointers, etc. is to:
|
|
* 1 - reduce the number of instanciations to the strict minimum
|
|
* 2 - avoid infinite recursion of the instanciations with Block<Block<Block<...> > >
|
|
*/
|
|
static bool blocked_lu(int rows, int cols, Scalar* lu_data, int luStride, int* row_transpositions, int& nb_transpositions, int maxBlockSize=256)
|
|
{
|
|
MapLU lu1(lu_data,StorageOrder==RowMajor?rows:luStride,StorageOrder==RowMajor?luStride:cols);
|
|
MatrixType lu(lu1,0,0,rows,cols);
|
|
|
|
const int size = std::min(rows,cols);
|
|
|
|
// if the matrix is too small, no blocking:
|
|
if(size<=16)
|
|
{
|
|
return unblocked_lu(lu, row_transpositions, nb_transpositions);
|
|
}
|
|
|
|
// automatically adjust the number of subdivisions to the size
|
|
// of the matrix so that there is enough sub blocks:
|
|
int blockSize;
|
|
{
|
|
blockSize = size/8;
|
|
blockSize = (blockSize/16)*16;
|
|
blockSize = std::min(std::max(blockSize,8), maxBlockSize);
|
|
}
|
|
|
|
nb_transpositions = 0;
|
|
for(int k = 0; k < size; k+=blockSize)
|
|
{
|
|
int bs = std::min(size-k,blockSize); // actual size of the block
|
|
int trows = rows - k - bs; // trailing rows
|
|
int tsize = size - k - bs; // trailing size
|
|
|
|
// partition the matrix:
|
|
// A00 | A01 | A02
|
|
// lu = A10 | A11 | A12
|
|
// A20 | A21 | A22
|
|
BlockType A_0(lu,0,0,rows,k);
|
|
BlockType A_2(lu,0,k+bs,rows,tsize);
|
|
BlockType A11(lu,k,k,bs,bs);
|
|
BlockType A12(lu,k,k+bs,bs,tsize);
|
|
BlockType A21(lu,k+bs,k,trows,bs);
|
|
BlockType A22(lu,k+bs,k+bs,trows,tsize);
|
|
|
|
int nb_transpositions_in_panel;
|
|
// recursively calls the blocked LU algorithm with a very small
|
|
// blocking size:
|
|
if(!blocked_lu(trows+bs, bs, &lu.coeffRef(k,k), luStride,
|
|
row_transpositions+k, nb_transpositions_in_panel, 16))
|
|
{
|
|
// end quickly with undefined coefficients, just avoid generating inf/nan values.
|
|
// before exiting, make sure to initialize the still uninitialized row_transpositions
|
|
// in a sane state without destroying what we already have.
|
|
for(int i=k; i<size; ++i)
|
|
row_transpositions[i] = i;
|
|
return false;
|
|
}
|
|
nb_transpositions += nb_transpositions_in_panel;
|
|
|
|
// update permutations and apply them to A10
|
|
for(int i=k; i<k+bs; ++i)
|
|
{
|
|
int piv = (row_transpositions[i] += k);
|
|
A_0.row(i).swap(A_0.row(piv));
|
|
}
|
|
|
|
if(trows)
|
|
{
|
|
// apply permutations to A_2
|
|
for(int i=k;i<k+bs; ++i)
|
|
A_2.row(i).swap(A_2.row(row_transpositions[i]));
|
|
|
|
// A12 = A11^-1 A12
|
|
A11.template triangularView<UnitLower>().solveInPlace(A12);
|
|
|
|
A22.noalias() -= A21 * A12;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
|
|
/** \internal performs the LU decomposition with partial pivoting in-place.
|
|
*/
|
|
template<typename MatrixType, typename IntVector>
|
|
void ei_partial_lu_inplace(MatrixType& lu, IntVector& row_transpositions, int& nb_transpositions)
|
|
{
|
|
ei_assert(lu.cols() == row_transpositions.size());
|
|
ei_assert((&row_transpositions.coeffRef(1)-&row_transpositions.coeffRef(0)) == 1);
|
|
|
|
ei_partial_lu_impl
|
|
<typename MatrixType::Scalar, MatrixType::Flags&RowMajorBit?RowMajor:ColMajor>
|
|
::blocked_lu(lu.rows(), lu.cols(), &lu.coeffRef(0,0), lu.outerStride(), &row_transpositions.coeffRef(0), nb_transpositions);
|
|
}
|
|
|
|
template<typename MatrixType>
|
|
PartialPivLU<MatrixType>& PartialPivLU<MatrixType>::compute(const MatrixType& matrix)
|
|
{
|
|
m_lu = matrix;
|
|
|
|
ei_assert(matrix.rows() == matrix.cols() && "PartialPivLU is only for square (and moreover invertible) matrices");
|
|
const int size = matrix.rows();
|
|
|
|
PermutationVectorType rows_transpositions(size);
|
|
|
|
int nb_transpositions;
|
|
ei_partial_lu_inplace(m_lu, rows_transpositions, nb_transpositions);
|
|
m_det_p = (nb_transpositions%2) ? -1 : 1;
|
|
|
|
m_p.setIdentity(size);
|
|
for(int k = size-1; k >= 0; --k)
|
|
m_p.applyTranspositionOnTheRight(k, rows_transpositions.coeff(k));
|
|
|
|
m_isInitialized = true;
|
|
return *this;
|
|
}
|
|
|
|
template<typename MatrixType>
|
|
typename ei_traits<MatrixType>::Scalar PartialPivLU<MatrixType>::determinant() const
|
|
{
|
|
ei_assert(m_isInitialized && "PartialPivLU is not initialized.");
|
|
return Scalar(m_det_p) * m_lu.diagonal().prod();
|
|
}
|
|
|
|
/** \returns the matrix represented by the decomposition,
|
|
* i.e., it returns the product: P^{-1} L U.
|
|
* This function is provided for debug purpose. */
|
|
template<typename MatrixType>
|
|
MatrixType PartialPivLU<MatrixType>::reconstructedMatrix() const
|
|
{
|
|
ei_assert(m_isInitialized && "LU is not initialized.");
|
|
// LU
|
|
MatrixType res = m_lu.template triangularView<UnitLower>().toDenseMatrix()
|
|
* m_lu.template triangularView<Upper>();
|
|
|
|
// P^{-1}(LU)
|
|
res = m_p.inverse() * res;
|
|
|
|
return res;
|
|
}
|
|
|
|
/***** Implementation of solve() *****************************************************/
|
|
|
|
template<typename _MatrixType, typename Rhs>
|
|
struct ei_solve_retval<PartialPivLU<_MatrixType>, Rhs>
|
|
: ei_solve_retval_base<PartialPivLU<_MatrixType>, Rhs>
|
|
{
|
|
EIGEN_MAKE_SOLVE_HELPERS(PartialPivLU<_MatrixType>,Rhs)
|
|
|
|
template<typename Dest> void evalTo(Dest& dst) const
|
|
{
|
|
/* The decomposition PA = LU can be rewritten as A = P^{-1} L U.
|
|
* So we proceed as follows:
|
|
* Step 1: compute c = Pb.
|
|
* Step 2: replace c by the solution x to Lx = c.
|
|
* Step 3: replace c by the solution x to Ux = c.
|
|
*/
|
|
|
|
const int size = dec().matrixLU().rows();
|
|
ei_assert(rhs().rows() == size);
|
|
|
|
dst.resize(size, rhs().cols());
|
|
|
|
// Step 1
|
|
dst = dec().permutationP() * rhs();
|
|
|
|
// Step 2
|
|
dec().matrixLU().template triangularView<UnitLower>().solveInPlace(dst);
|
|
|
|
// Step 3
|
|
dec().matrixLU().template triangularView<Upper>().solveInPlace(dst);
|
|
}
|
|
};
|
|
|
|
/******** MatrixBase methods *******/
|
|
|
|
/** \lu_module
|
|
*
|
|
* \return the partial-pivoting LU decomposition of \c *this.
|
|
*
|
|
* \sa class PartialPivLU
|
|
*/
|
|
template<typename Derived>
|
|
inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject>
|
|
MatrixBase<Derived>::partialPivLu() const
|
|
{
|
|
return PartialPivLU<PlainObject>(eval());
|
|
}
|
|
|
|
/** \lu_module
|
|
*
|
|
* Synonym of partialPivLu().
|
|
*
|
|
* \return the partial-pivoting LU decomposition of \c *this.
|
|
*
|
|
* \sa class PartialPivLU
|
|
*/
|
|
template<typename Derived>
|
|
inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject>
|
|
MatrixBase<Derived>::lu() const
|
|
{
|
|
return PartialPivLU<PlainObject>(eval());
|
|
}
|
|
|
|
#endif // EIGEN_PARTIALLU_H
|