mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-07-09 22:51:51 +08:00
604 lines
27 KiB
C++
604 lines
27 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_CXX11_TENSOR_TENSOR_IMAGE_PATCH_H
|
|
#define EIGEN_CXX11_TENSOR_TENSOR_IMAGE_PATCH_H
|
|
|
|
namespace Eigen {
|
|
|
|
/** \class TensorImagePatch
|
|
* \ingroup CXX11_Tensor_Module
|
|
*
|
|
* \brief Patch extraction specialized for image processing.
|
|
* This assumes that the input has a least 3 dimensions ordered as follow:
|
|
* 1st dimension: channels (of size d)
|
|
* 2nd dimension: rows (of size r)
|
|
* 3rd dimension: columns (of size c)
|
|
* There can be additional dimensions such as time (for video) or batch (for
|
|
* bulk processing after the first 3.
|
|
* Calling the image patch code with patch_rows and patch_cols is equivalent
|
|
* to calling the regular patch extraction code with parameters d, patch_rows,
|
|
* patch_cols, and 1 for all the additional dimensions.
|
|
*/
|
|
namespace internal {
|
|
|
|
template<DenseIndex Rows, DenseIndex Cols, typename XprType>
|
|
struct traits<TensorImagePatchOp<Rows, Cols, XprType> > : public traits<XprType>
|
|
{
|
|
typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
|
|
typedef traits<XprType> XprTraits;
|
|
typedef typename XprTraits::StorageKind StorageKind;
|
|
typedef typename XprTraits::Index Index;
|
|
typedef typename XprType::Nested Nested;
|
|
typedef typename remove_reference<Nested>::type _Nested;
|
|
static const int NumDimensions = XprTraits::NumDimensions + 1;
|
|
static const int Layout = XprTraits::Layout;
|
|
typedef typename XprTraits::PointerType PointerType;
|
|
};
|
|
|
|
template<DenseIndex Rows, DenseIndex Cols, typename XprType>
|
|
struct eval<TensorImagePatchOp<Rows, Cols, XprType>, Eigen::Dense>
|
|
{
|
|
typedef const TensorImagePatchOp<Rows, Cols, XprType>& type;
|
|
};
|
|
|
|
template<DenseIndex Rows, DenseIndex Cols, typename XprType>
|
|
struct nested<TensorImagePatchOp<Rows, Cols, XprType>, 1, typename eval<TensorImagePatchOp<Rows, Cols, XprType> >::type>
|
|
{
|
|
typedef TensorImagePatchOp<Rows, Cols, XprType> type;
|
|
};
|
|
|
|
template <typename Self, bool Vectorizable>
|
|
struct ImagePatchCopyOp {
|
|
typedef typename Self::Index Index;
|
|
typedef typename Self::Scalar Scalar;
|
|
typedef typename Self::Impl Impl;
|
|
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run(
|
|
const Self& self, const Index num_coeff_to_copy, const Index dst_index,
|
|
Scalar* dst_data, const Index src_index) {
|
|
const Impl& impl = self.impl();
|
|
for (Index i = 0; i < num_coeff_to_copy; ++i) {
|
|
dst_data[dst_index + i] = impl.coeff(src_index + i);
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename Self>
|
|
struct ImagePatchCopyOp<Self, true> {
|
|
typedef typename Self::Index Index;
|
|
typedef typename Self::Scalar Scalar;
|
|
typedef typename Self::Impl Impl;
|
|
typedef typename packet_traits<Scalar>::type Packet;
|
|
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run(
|
|
const Self& self, const Index num_coeff_to_copy, const Index dst_index,
|
|
Scalar* dst_data, const Index src_index) {
|
|
const Impl& impl = self.impl();
|
|
const Index packet_size = internal::unpacket_traits<Packet>::size;
|
|
const Index vectorized_size =
|
|
(num_coeff_to_copy / packet_size) * packet_size;
|
|
for (Index i = 0; i < vectorized_size; i += packet_size) {
|
|
Packet p = impl.template packet<Unaligned>(src_index + i);
|
|
internal::pstoret<Scalar, Packet, Unaligned>(dst_data + dst_index + i, p);
|
|
}
|
|
for (Index i = vectorized_size; i < num_coeff_to_copy; ++i) {
|
|
dst_data[dst_index + i] = impl.coeff(src_index + i);
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename Self>
|
|
struct ImagePatchPaddingOp {
|
|
typedef typename Self::Index Index;
|
|
typedef typename Self::Scalar Scalar;
|
|
typedef typename packet_traits<Scalar>::type Packet;
|
|
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run(
|
|
const Index num_coeff_to_pad, const Scalar padding_value,
|
|
const Index dst_index, Scalar* dst_data) {
|
|
const Index packet_size = internal::unpacket_traits<Packet>::size;
|
|
const Packet padded_packet = internal::pset1<Packet>(padding_value);
|
|
const Index vectorized_size =
|
|
(num_coeff_to_pad / packet_size) * packet_size;
|
|
for (Index i = 0; i < vectorized_size; i += packet_size) {
|
|
internal::pstoret<Scalar, Packet, Unaligned>(dst_data + dst_index + i,
|
|
padded_packet);
|
|
}
|
|
for (Index i = vectorized_size; i < num_coeff_to_pad; ++i) {
|
|
dst_data[dst_index + i] = padding_value;
|
|
}
|
|
}
|
|
};
|
|
|
|
} // end namespace internal
|
|
|
|
template<DenseIndex Rows, DenseIndex Cols, typename XprType>
|
|
class TensorImagePatchOp : public TensorBase<TensorImagePatchOp<Rows, Cols, XprType>, ReadOnlyAccessors>
|
|
{
|
|
public:
|
|
typedef typename Eigen::internal::traits<TensorImagePatchOp>::Scalar Scalar;
|
|
typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
|
|
typedef typename XprType::CoeffReturnType CoeffReturnType;
|
|
typedef typename Eigen::internal::nested<TensorImagePatchOp>::type Nested;
|
|
typedef typename Eigen::internal::traits<TensorImagePatchOp>::StorageKind StorageKind;
|
|
typedef typename Eigen::internal::traits<TensorImagePatchOp>::Index Index;
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorImagePatchOp(const XprType& expr, DenseIndex patch_rows, DenseIndex patch_cols,
|
|
DenseIndex row_strides, DenseIndex col_strides,
|
|
DenseIndex in_row_strides, DenseIndex in_col_strides,
|
|
DenseIndex row_inflate_strides, DenseIndex col_inflate_strides,
|
|
PaddingType padding_type, Scalar padding_value)
|
|
: m_xpr(expr), m_patch_rows(patch_rows), m_patch_cols(patch_cols),
|
|
m_row_strides(row_strides), m_col_strides(col_strides),
|
|
m_in_row_strides(in_row_strides), m_in_col_strides(in_col_strides),
|
|
m_row_inflate_strides(row_inflate_strides), m_col_inflate_strides(col_inflate_strides),
|
|
m_padding_explicit(false), m_padding_top(0), m_padding_bottom(0), m_padding_left(0), m_padding_right(0),
|
|
m_padding_type(padding_type), m_padding_value(padding_value) {}
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorImagePatchOp(const XprType& expr, DenseIndex patch_rows, DenseIndex patch_cols,
|
|
DenseIndex row_strides, DenseIndex col_strides,
|
|
DenseIndex in_row_strides, DenseIndex in_col_strides,
|
|
DenseIndex row_inflate_strides, DenseIndex col_inflate_strides,
|
|
DenseIndex padding_top, DenseIndex padding_bottom,
|
|
DenseIndex padding_left, DenseIndex padding_right,
|
|
Scalar padding_value)
|
|
: m_xpr(expr), m_patch_rows(patch_rows), m_patch_cols(patch_cols),
|
|
m_row_strides(row_strides), m_col_strides(col_strides),
|
|
m_in_row_strides(in_row_strides), m_in_col_strides(in_col_strides),
|
|
m_row_inflate_strides(row_inflate_strides), m_col_inflate_strides(col_inflate_strides),
|
|
m_padding_explicit(true), m_padding_top(padding_top), m_padding_bottom(padding_bottom),
|
|
m_padding_left(padding_left), m_padding_right(padding_right),
|
|
m_padding_type(PADDING_VALID), m_padding_value(padding_value) {}
|
|
|
|
|
|
EIGEN_DEVICE_FUNC
|
|
DenseIndex patch_rows() const { return m_patch_rows; }
|
|
EIGEN_DEVICE_FUNC
|
|
DenseIndex patch_cols() const { return m_patch_cols; }
|
|
EIGEN_DEVICE_FUNC
|
|
DenseIndex row_strides() const { return m_row_strides; }
|
|
EIGEN_DEVICE_FUNC
|
|
DenseIndex col_strides() const { return m_col_strides; }
|
|
EIGEN_DEVICE_FUNC
|
|
DenseIndex in_row_strides() const { return m_in_row_strides; }
|
|
EIGEN_DEVICE_FUNC
|
|
DenseIndex in_col_strides() const { return m_in_col_strides; }
|
|
EIGEN_DEVICE_FUNC
|
|
DenseIndex row_inflate_strides() const { return m_row_inflate_strides; }
|
|
EIGEN_DEVICE_FUNC
|
|
DenseIndex col_inflate_strides() const { return m_col_inflate_strides; }
|
|
EIGEN_DEVICE_FUNC
|
|
bool padding_explicit() const { return m_padding_explicit; }
|
|
EIGEN_DEVICE_FUNC
|
|
DenseIndex padding_top() const { return m_padding_top; }
|
|
EIGEN_DEVICE_FUNC
|
|
DenseIndex padding_bottom() const { return m_padding_bottom; }
|
|
EIGEN_DEVICE_FUNC
|
|
DenseIndex padding_left() const { return m_padding_left; }
|
|
EIGEN_DEVICE_FUNC
|
|
DenseIndex padding_right() const { return m_padding_right; }
|
|
EIGEN_DEVICE_FUNC
|
|
PaddingType padding_type() const { return m_padding_type; }
|
|
EIGEN_DEVICE_FUNC
|
|
Scalar padding_value() const { return m_padding_value; }
|
|
|
|
EIGEN_DEVICE_FUNC
|
|
const typename internal::remove_all<typename XprType::Nested>::type&
|
|
expression() const { return m_xpr; }
|
|
|
|
protected:
|
|
typename XprType::Nested m_xpr;
|
|
const DenseIndex m_patch_rows;
|
|
const DenseIndex m_patch_cols;
|
|
const DenseIndex m_row_strides;
|
|
const DenseIndex m_col_strides;
|
|
const DenseIndex m_in_row_strides;
|
|
const DenseIndex m_in_col_strides;
|
|
const DenseIndex m_row_inflate_strides;
|
|
const DenseIndex m_col_inflate_strides;
|
|
const bool m_padding_explicit;
|
|
const DenseIndex m_padding_top;
|
|
const DenseIndex m_padding_bottom;
|
|
const DenseIndex m_padding_left;
|
|
const DenseIndex m_padding_right;
|
|
const PaddingType m_padding_type;
|
|
const Scalar m_padding_value;
|
|
};
|
|
|
|
// Eval as rvalue
|
|
template<DenseIndex Rows, DenseIndex Cols, typename ArgType, typename Device>
|
|
struct TensorEvaluator<const TensorImagePatchOp<Rows, Cols, ArgType>, Device>
|
|
{
|
|
typedef TensorImagePatchOp<Rows, Cols, ArgType> XprType;
|
|
typedef typename XprType::Index Index;
|
|
static const int NumInputDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
|
|
static const int NumDims = NumInputDims + 1;
|
|
typedef DSizes<Index, NumDims> Dimensions;
|
|
typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
|
|
typedef TensorEvaluator<const TensorImagePatchOp<Rows, Cols, ArgType>,
|
|
Device> Self;
|
|
typedef TensorEvaluator<ArgType, Device> Impl;
|
|
typedef typename XprType::CoeffReturnType CoeffReturnType;
|
|
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
|
|
static const int PacketSize = PacketType<CoeffReturnType, Device>::size;
|
|
typedef StorageMemory<CoeffReturnType, Device> Storage;
|
|
typedef typename Storage::Type EvaluatorPointerType;
|
|
|
|
enum {
|
|
IsAligned = false,
|
|
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
|
|
BlockAccess = false,
|
|
PreferBlockAccess = true,
|
|
Layout = TensorEvaluator<ArgType, Device>::Layout,
|
|
CoordAccess = false,
|
|
RawAccess = false
|
|
};
|
|
|
|
//===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
|
|
typedef internal::TensorBlockNotImplemented TensorBlock;
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
EIGEN_STRONG_INLINE TensorEvaluator( const XprType& op, const Device& device)
|
|
: m_device(device), m_impl(op.expression(), device)
|
|
{
|
|
EIGEN_STATIC_ASSERT((NumDims >= 4), YOU_MADE_A_PROGRAMMING_MISTAKE);
|
|
|
|
m_paddingValue = op.padding_value();
|
|
|
|
const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
|
|
|
|
// Caches a few variables.
|
|
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
|
|
m_inputDepth = input_dims[0];
|
|
m_inputRows = input_dims[1];
|
|
m_inputCols = input_dims[2];
|
|
} else {
|
|
m_inputDepth = input_dims[NumInputDims-1];
|
|
m_inputRows = input_dims[NumInputDims-2];
|
|
m_inputCols = input_dims[NumInputDims-3];
|
|
}
|
|
|
|
m_row_strides = op.row_strides();
|
|
m_col_strides = op.col_strides();
|
|
|
|
// Input strides and effective input/patch size
|
|
m_in_row_strides = op.in_row_strides();
|
|
m_in_col_strides = op.in_col_strides();
|
|
m_row_inflate_strides = op.row_inflate_strides();
|
|
m_col_inflate_strides = op.col_inflate_strides();
|
|
// The "effective" input rows and input cols are the input rows and cols
|
|
// after inflating them with zeros.
|
|
// For examples, a 2x3 matrix with row_inflate_strides and
|
|
// col_inflate_strides of 2 comes from:
|
|
// A B C
|
|
// D E F
|
|
//
|
|
// to a matrix is 3 x 5:
|
|
//
|
|
// A . B . C
|
|
// . . . . .
|
|
// D . E . F
|
|
|
|
m_input_rows_eff = (m_inputRows - 1) * m_row_inflate_strides + 1;
|
|
m_input_cols_eff = (m_inputCols - 1) * m_col_inflate_strides + 1;
|
|
m_patch_rows_eff = op.patch_rows() + (op.patch_rows() - 1) * (m_in_row_strides - 1);
|
|
m_patch_cols_eff = op.patch_cols() + (op.patch_cols() - 1) * (m_in_col_strides - 1);
|
|
|
|
if (op.padding_explicit()) {
|
|
m_outputRows = numext::ceil((m_input_rows_eff + op.padding_top() + op.padding_bottom() - m_patch_rows_eff + 1.f) / static_cast<float>(m_row_strides));
|
|
m_outputCols = numext::ceil((m_input_cols_eff + op.padding_left() + op.padding_right() - m_patch_cols_eff + 1.f) / static_cast<float>(m_col_strides));
|
|
m_rowPaddingTop = op.padding_top();
|
|
m_colPaddingLeft = op.padding_left();
|
|
} else {
|
|
// Computing padding from the type
|
|
switch (op.padding_type()) {
|
|
case PADDING_VALID:
|
|
m_outputRows = numext::ceil((m_input_rows_eff - m_patch_rows_eff + 1.f) / static_cast<float>(m_row_strides));
|
|
m_outputCols = numext::ceil((m_input_cols_eff - m_patch_cols_eff + 1.f) / static_cast<float>(m_col_strides));
|
|
// Calculate the padding
|
|
m_rowPaddingTop = numext::maxi<Index>(0, ((m_outputRows - 1) * m_row_strides + m_patch_rows_eff - m_input_rows_eff) / 2);
|
|
m_colPaddingLeft = numext::maxi<Index>(0, ((m_outputCols - 1) * m_col_strides + m_patch_cols_eff - m_input_cols_eff) / 2);
|
|
break;
|
|
case PADDING_SAME:
|
|
m_outputRows = numext::ceil(m_input_rows_eff / static_cast<float>(m_row_strides));
|
|
m_outputCols = numext::ceil(m_input_cols_eff / static_cast<float>(m_col_strides));
|
|
// Calculate the padding
|
|
m_rowPaddingTop = ((m_outputRows - 1) * m_row_strides + m_patch_rows_eff - m_input_rows_eff) / 2;
|
|
m_colPaddingLeft = ((m_outputCols - 1) * m_col_strides + m_patch_cols_eff - m_input_cols_eff) / 2;
|
|
// The padding size calculation for PADDING_SAME has been updated to
|
|
// be consistent with how TensorFlow extracts its paddings.
|
|
m_rowPaddingTop = numext::maxi<Index>(0, m_rowPaddingTop);
|
|
m_colPaddingLeft = numext::maxi<Index>(0, m_colPaddingLeft);
|
|
break;
|
|
default:
|
|
eigen_assert(false && "unexpected padding");
|
|
m_outputCols=0; // silence the uninitialised warning;
|
|
m_outputRows=0; //// silence the uninitialised warning;
|
|
}
|
|
}
|
|
eigen_assert(m_outputRows > 0);
|
|
eigen_assert(m_outputCols > 0);
|
|
|
|
// Dimensions for result of extraction.
|
|
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
|
|
// ColMajor
|
|
// 0: depth
|
|
// 1: patch_rows
|
|
// 2: patch_cols
|
|
// 3: number of patches
|
|
// 4 and beyond: anything else (such as batch).
|
|
m_dimensions[0] = input_dims[0];
|
|
m_dimensions[1] = op.patch_rows();
|
|
m_dimensions[2] = op.patch_cols();
|
|
m_dimensions[3] = m_outputRows * m_outputCols;
|
|
for (int i = 4; i < NumDims; ++i) {
|
|
m_dimensions[i] = input_dims[i-1];
|
|
}
|
|
} else {
|
|
// RowMajor
|
|
// NumDims-1: depth
|
|
// NumDims-2: patch_rows
|
|
// NumDims-3: patch_cols
|
|
// NumDims-4: number of patches
|
|
// NumDims-5 and beyond: anything else (such as batch).
|
|
m_dimensions[NumDims-1] = input_dims[NumInputDims-1];
|
|
m_dimensions[NumDims-2] = op.patch_rows();
|
|
m_dimensions[NumDims-3] = op.patch_cols();
|
|
m_dimensions[NumDims-4] = m_outputRows * m_outputCols;
|
|
for (int i = NumDims-5; i >= 0; --i) {
|
|
m_dimensions[i] = input_dims[i];
|
|
}
|
|
}
|
|
|
|
// Strides for moving the patch in various dimensions.
|
|
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
|
|
m_colStride = m_dimensions[1];
|
|
m_patchStride = m_colStride * m_dimensions[2] * m_dimensions[0];
|
|
m_otherStride = m_patchStride * m_dimensions[3];
|
|
} else {
|
|
m_colStride = m_dimensions[NumDims-2];
|
|
m_patchStride = m_colStride * m_dimensions[NumDims-3] * m_dimensions[NumDims-1];
|
|
m_otherStride = m_patchStride * m_dimensions[NumDims-4];
|
|
}
|
|
|
|
// Strides for navigating through the input tensor.
|
|
m_rowInputStride = m_inputDepth;
|
|
m_colInputStride = m_inputDepth * m_inputRows;
|
|
m_patchInputStride = m_inputDepth * m_inputRows * m_inputCols;
|
|
|
|
// Fast representations of different variables.
|
|
m_fastOtherStride = internal::TensorIntDivisor<Index>(m_otherStride);
|
|
m_fastPatchStride = internal::TensorIntDivisor<Index>(m_patchStride);
|
|
m_fastColStride = internal::TensorIntDivisor<Index>(m_colStride);
|
|
m_fastInflateRowStride = internal::TensorIntDivisor<Index>(m_row_inflate_strides);
|
|
m_fastInflateColStride = internal::TensorIntDivisor<Index>(m_col_inflate_strides);
|
|
m_fastInputColsEff = internal::TensorIntDivisor<Index>(m_input_cols_eff);
|
|
|
|
// Number of patches in the width dimension.
|
|
m_fastOutputRows = internal::TensorIntDivisor<Index>(m_outputRows);
|
|
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
|
|
m_fastOutputDepth = internal::TensorIntDivisor<Index>(m_dimensions[0]);
|
|
} else {
|
|
m_fastOutputDepth = internal::TensorIntDivisor<Index>(m_dimensions[NumDims-1]);
|
|
}
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
|
|
|
|
EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType /*data*/) {
|
|
m_impl.evalSubExprsIfNeeded(NULL);
|
|
return true;
|
|
}
|
|
|
|
#ifdef EIGEN_USE_THREADS
|
|
template <typename EvalSubExprsCallback>
|
|
EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync(
|
|
EvaluatorPointerType, EvalSubExprsCallback done) {
|
|
m_impl.evalSubExprsIfNeededAsync(nullptr, [done](bool) { done(true); });
|
|
}
|
|
#endif // EIGEN_USE_THREADS
|
|
|
|
EIGEN_STRONG_INLINE void cleanup() {
|
|
m_impl.cleanup();
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
|
|
{
|
|
// Patch index corresponding to the passed in index.
|
|
const Index patchIndex = index / m_fastPatchStride;
|
|
// Find the offset of the element wrt the location of the first element.
|
|
const Index patchOffset = (index - patchIndex * m_patchStride) / m_fastOutputDepth;
|
|
|
|
// Other ways to index this element.
|
|
const Index otherIndex = (NumDims == 4) ? 0 : index / m_fastOtherStride;
|
|
const Index patch2DIndex = (NumDims == 4) ? patchIndex : (index - otherIndex * m_otherStride) / m_fastPatchStride;
|
|
|
|
// Calculate col index in the input original tensor.
|
|
const Index colIndex = patch2DIndex / m_fastOutputRows;
|
|
const Index colOffset = patchOffset / m_fastColStride;
|
|
const Index inputCol = colIndex * m_col_strides + colOffset * m_in_col_strides - m_colPaddingLeft;
|
|
const Index origInputCol = (m_col_inflate_strides == 1) ? inputCol : ((inputCol >= 0) ? (inputCol / m_fastInflateColStride) : 0);
|
|
if (inputCol < 0 || inputCol >= m_input_cols_eff ||
|
|
((m_col_inflate_strides != 1) && (inputCol != origInputCol * m_col_inflate_strides))) {
|
|
return Scalar(m_paddingValue);
|
|
}
|
|
|
|
// Calculate row index in the original input tensor.
|
|
const Index rowIndex = patch2DIndex - colIndex * m_outputRows;
|
|
const Index rowOffset = patchOffset - colOffset * m_colStride;
|
|
const Index inputRow = rowIndex * m_row_strides + rowOffset * m_in_row_strides - m_rowPaddingTop;
|
|
const Index origInputRow = (m_row_inflate_strides == 1) ? inputRow : ((inputRow >= 0) ? (inputRow / m_fastInflateRowStride) : 0);
|
|
if (inputRow < 0 || inputRow >= m_input_rows_eff ||
|
|
((m_row_inflate_strides != 1) && (inputRow != origInputRow * m_row_inflate_strides))) {
|
|
return Scalar(m_paddingValue);
|
|
}
|
|
|
|
const int depth_index = static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : NumDims - 1;
|
|
const Index depth = index - (index / m_fastOutputDepth) * m_dimensions[depth_index];
|
|
|
|
const Index inputIndex = depth + origInputRow * m_rowInputStride + origInputCol * m_colInputStride + otherIndex * m_patchInputStride;
|
|
return m_impl.coeff(inputIndex);
|
|
}
|
|
|
|
template<int LoadMode>
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
|
|
{
|
|
EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
|
|
eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
|
|
|
|
if (m_in_row_strides != 1 || m_in_col_strides != 1 || m_row_inflate_strides != 1 || m_col_inflate_strides != 1) {
|
|
return packetWithPossibleZero(index);
|
|
}
|
|
|
|
const Index indices[2] = {index, index + PacketSize - 1};
|
|
const Index patchIndex = indices[0] / m_fastPatchStride;
|
|
if (patchIndex != indices[1] / m_fastPatchStride) {
|
|
return packetWithPossibleZero(index);
|
|
}
|
|
const Index otherIndex = (NumDims == 4) ? 0 : indices[0] / m_fastOtherStride;
|
|
eigen_assert(otherIndex == indices[1] / m_fastOtherStride);
|
|
|
|
// Find the offset of the element wrt the location of the first element.
|
|
const Index patchOffsets[2] = {(indices[0] - patchIndex * m_patchStride) / m_fastOutputDepth,
|
|
(indices[1] - patchIndex * m_patchStride) / m_fastOutputDepth};
|
|
|
|
const Index patch2DIndex = (NumDims == 4) ? patchIndex : (indices[0] - otherIndex * m_otherStride) / m_fastPatchStride;
|
|
eigen_assert(patch2DIndex == (indices[1] - otherIndex * m_otherStride) / m_fastPatchStride);
|
|
|
|
const Index colIndex = patch2DIndex / m_fastOutputRows;
|
|
const Index colOffsets[2] = {patchOffsets[0] / m_fastColStride, patchOffsets[1] / m_fastColStride};
|
|
|
|
// Calculate col indices in the original input tensor.
|
|
const Index inputCols[2] = {colIndex * m_col_strides + colOffsets[0] -
|
|
m_colPaddingLeft, colIndex * m_col_strides + colOffsets[1] - m_colPaddingLeft};
|
|
if (inputCols[1] < 0 || inputCols[0] >= m_inputCols) {
|
|
return internal::pset1<PacketReturnType>(Scalar(m_paddingValue));
|
|
}
|
|
|
|
if (inputCols[0] == inputCols[1]) {
|
|
const Index rowIndex = patch2DIndex - colIndex * m_outputRows;
|
|
const Index rowOffsets[2] = {patchOffsets[0] - colOffsets[0]*m_colStride, patchOffsets[1] - colOffsets[1]*m_colStride};
|
|
eigen_assert(rowOffsets[0] <= rowOffsets[1]);
|
|
// Calculate col indices in the original input tensor.
|
|
const Index inputRows[2] = {rowIndex * m_row_strides + rowOffsets[0] -
|
|
m_rowPaddingTop, rowIndex * m_row_strides + rowOffsets[1] - m_rowPaddingTop};
|
|
|
|
if (inputRows[1] < 0 || inputRows[0] >= m_inputRows) {
|
|
return internal::pset1<PacketReturnType>(Scalar(m_paddingValue));
|
|
}
|
|
|
|
if (inputRows[0] >= 0 && inputRows[1] < m_inputRows) {
|
|
// no padding
|
|
const int depth_index = static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : NumDims - 1;
|
|
const Index depth = index - (index / m_fastOutputDepth) * m_dimensions[depth_index];
|
|
const Index inputIndex = depth + inputRows[0] * m_rowInputStride + inputCols[0] * m_colInputStride + otherIndex * m_patchInputStride;
|
|
return m_impl.template packet<Unaligned>(inputIndex);
|
|
}
|
|
}
|
|
|
|
return packetWithPossibleZero(index);
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return NULL; }
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; }
|
|
|
|
#ifdef EIGEN_USE_SYCL
|
|
// binding placeholder accessors to a command group handler for SYCL
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const {
|
|
m_impl.bind(cgh);
|
|
}
|
|
#endif
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rowPaddingTop() const { return m_rowPaddingTop; }
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index colPaddingLeft() const { return m_colPaddingLeft; }
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index outputRows() const { return m_outputRows; }
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index outputCols() const { return m_outputCols; }
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index userRowStride() const { return m_row_strides; }
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index userColStride() const { return m_col_strides; }
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index userInRowStride() const { return m_in_row_strides; }
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index userInColStride() const { return m_in_col_strides; }
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rowInflateStride() const { return m_row_inflate_strides; }
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index colInflateStride() const { return m_col_inflate_strides; }
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
|
|
costPerCoeff(bool vectorized) const {
|
|
// We conservatively estimate the cost for the code path where the computed
|
|
// index is inside the original image and
|
|
// TensorEvaluator<ArgType, Device>::CoordAccess is false.
|
|
const double compute_cost = 3 * TensorOpCost::DivCost<Index>() +
|
|
6 * TensorOpCost::MulCost<Index>() +
|
|
8 * TensorOpCost::MulCost<Index>();
|
|
return m_impl.costPerCoeff(vectorized) +
|
|
TensorOpCost(0, 0, compute_cost, vectorized, PacketSize);
|
|
}
|
|
|
|
protected:
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetWithPossibleZero(Index index) const
|
|
{
|
|
EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
|
|
EIGEN_UNROLL_LOOP
|
|
for (int i = 0; i < PacketSize; ++i) {
|
|
values[i] = coeff(index+i);
|
|
}
|
|
PacketReturnType rslt = internal::pload<PacketReturnType>(values);
|
|
return rslt;
|
|
}
|
|
|
|
Dimensions m_dimensions;
|
|
|
|
Index m_otherStride;
|
|
Index m_patchStride;
|
|
Index m_colStride;
|
|
Index m_row_strides;
|
|
Index m_col_strides;
|
|
|
|
Index m_in_row_strides;
|
|
Index m_in_col_strides;
|
|
Index m_row_inflate_strides;
|
|
Index m_col_inflate_strides;
|
|
|
|
Index m_input_rows_eff;
|
|
Index m_input_cols_eff;
|
|
Index m_patch_rows_eff;
|
|
Index m_patch_cols_eff;
|
|
|
|
internal::TensorIntDivisor<Index> m_fastOtherStride;
|
|
internal::TensorIntDivisor<Index> m_fastPatchStride;
|
|
internal::TensorIntDivisor<Index> m_fastColStride;
|
|
internal::TensorIntDivisor<Index> m_fastInflateRowStride;
|
|
internal::TensorIntDivisor<Index> m_fastInflateColStride;
|
|
internal::TensorIntDivisor<Index> m_fastInputColsEff;
|
|
|
|
Index m_rowInputStride;
|
|
Index m_colInputStride;
|
|
Index m_patchInputStride;
|
|
|
|
Index m_inputDepth;
|
|
Index m_inputRows;
|
|
Index m_inputCols;
|
|
|
|
Index m_outputRows;
|
|
Index m_outputCols;
|
|
|
|
Index m_rowPaddingTop;
|
|
Index m_colPaddingLeft;
|
|
|
|
internal::TensorIntDivisor<Index> m_fastOutputRows;
|
|
internal::TensorIntDivisor<Index> m_fastOutputDepth;
|
|
|
|
Scalar m_paddingValue;
|
|
|
|
const Device EIGEN_DEVICE_REF m_device;
|
|
TensorEvaluator<ArgType, Device> m_impl;
|
|
};
|
|
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_CXX11_TENSOR_TENSOR_IMAGE_PATCH_H
|