Gael Guennebaud 842c4f8bfa Several compilation fixes for MSVC and NVCC, basically:
- added explicit enum to int conversion where needed
- if a function is not defined as declared and the return type is "tricky"
  then the type must be typedefined somewhere. A "tricky return type" can be:
  * a template class with a default parameter which depends on another template parameter
  * a nested template class, or type of a nested template class
2008-07-29 16:33:07 +00:00

253 lines
9.3 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob@math.jussieu.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_META_H
#define EIGEN_META_H
// just a workaround because GCC seems to not really like empty structs
#ifdef __GNUG__
struct ei_empty_struct{char _ei_dummy_;};
#define EIGEN_EMPTY_STRUCT : Eigen::ei_empty_struct
#else
#define EIGEN_EMPTY_STRUCT
#endif
//classes inheriting ei_no_assignment_operator don't generate a default operator=.
class ei_no_assignment_operator
{
private:
ei_no_assignment_operator& operator=(const ei_no_assignment_operator&);
};
template<int Value> class ei_int_if_dynamic EIGEN_EMPTY_STRUCT
{
public:
ei_int_if_dynamic() {}
explicit ei_int_if_dynamic(int) {}
static int value() { return Value; }
void setValue(int) {}
};
template<> class ei_int_if_dynamic<Dynamic>
{
int m_value;
ei_int_if_dynamic() {}
public:
explicit ei_int_if_dynamic(int value) : m_value(value) {}
int value() const { return m_value; }
void setValue(int value) { m_value = value; }
};
template<bool Condition, typename Then, typename Else>
struct ei_meta_if { typedef Then ret; };
template<typename Then, typename Else>
struct ei_meta_if <false, Then, Else> { typedef Else ret; };
template<typename T, typename U> struct ei_is_same_type { enum { ret = 0 }; };
template<typename T> struct ei_is_same_type<T,T> { enum { ret = 1 }; };
struct ei_meta_true {};
struct ei_meta_false {};
/** \internal
* Convenient struct to get the result type of a unary or binary functor.
*
* It supports both the current STL mechanism (using the result_type member) as well as
* upcoming next STL generation (using a templated result member).
* If none of these members is provided, then the type of the first argument is returned.
*/
template<typename T> struct ei_result_of {};
struct ei_has_none {int a[1];};
struct ei_has_std_result_type {int a[2];};
struct ei_has_tr1_result {int a[3];};
template<typename Func, typename ArgType, int SizeOf=sizeof(ei_has_none)>
struct ei_unary_result_of_select {typedef ArgType type;};
template<typename Func, typename ArgType>
struct ei_unary_result_of_select<Func, ArgType, sizeof(ei_has_std_result_type)> {typedef typename Func::result_type type;};
template<typename Func, typename ArgType>
struct ei_unary_result_of_select<Func, ArgType, sizeof(ei_has_tr1_result)> {typedef typename Func::template result<Func(ArgType)>::type type;};
template<typename Func, typename ArgType>
struct ei_result_of<Func(ArgType)> {
template<typename T>
static ei_has_std_result_type testFunctor(T const *, typename T::result_type const * = 0);
template<typename T>
static ei_has_tr1_result testFunctor(T const *, typename T::template result<T(ArgType)>::type const * = 0);
static ei_has_none testFunctor(...);
// note that the following indirection is needed for gcc-3.3
enum {FunctorType = sizeof(testFunctor(static_cast<Func*>(0)))};
typedef typename ei_unary_result_of_select<Func, ArgType, FunctorType>::type type;
};
template<typename Func, typename ArgType0, typename ArgType1, int SizeOf=sizeof(ei_has_none)>
struct ei_binary_result_of_select {typedef ArgType0 type;};
template<typename Func, typename ArgType0, typename ArgType1>
struct ei_binary_result_of_select<Func, ArgType0, ArgType1, sizeof(ei_has_std_result_type)>
{typedef typename Func::result_type type;};
template<typename Func, typename ArgType0, typename ArgType1>
struct ei_binary_result_of_select<Func, ArgType0, ArgType1, sizeof(ei_has_tr1_result)>
{typedef typename Func::template result<Func(ArgType0,ArgType1)>::type type;};
template<typename Func, typename ArgType0, typename ArgType1>
struct ei_result_of<Func(ArgType0,ArgType1)> {
template<typename T>
static ei_has_std_result_type testFunctor(T const *, typename T::result_type const * = 0);
template<typename T>
static ei_has_tr1_result testFunctor(T const *, typename T::template result<T(ArgType0,ArgType1)>::type const * = 0);
static ei_has_none testFunctor(...);
// note that the following indirection is needed for gcc-3.3
enum {FunctorType = sizeof(testFunctor(static_cast<Func*>(0)))};
typedef typename ei_binary_result_of_select<Func, ArgType0, ArgType1, FunctorType>::type type;
};
template<typename T> struct ei_functor_traits
{
enum
{
Cost = 10,
PacketAccess = false
};
};
template<typename T> struct ei_packet_traits
{
typedef T type;
enum {size=1};
};
template<typename T> struct ei_unpacket_traits
{
typedef T type;
enum {size=1};
};
template<typename Scalar, int Rows, int Cols, int MaxRows, int MaxCols, unsigned int SuggestedFlags>
class ei_corrected_matrix_flags
{
enum { row_major_bit = (Rows != 1 && Cols != 1) // if this is not a vector,
// then the storage order really matters,
// so let us strictly honor the user's choice.
? SuggestedFlags&RowMajorBit
: Cols > 1 ? RowMajorBit : 0,
inner_max_size = row_major_bit ? MaxCols : MaxRows,
is_big = inner_max_size == Dynamic,
linear_size = Cols * Rows,
packet_access_bit
= ei_packet_traits<Scalar>::size > 1
&& (is_big || linear_size%ei_packet_traits<Scalar>::size==0)
? PacketAccessBit : 0
};
public:
enum { ret = (SuggestedFlags & ~(EvalBeforeNestingBit | EvalBeforeAssigningBit | PacketAccessBit | RowMajorBit))
| LinearAccessBit | DirectAccessBit | packet_access_bit | row_major_bit
};
};
template<int _Rows, int _Cols> struct ei_size_at_compile_time
{
enum { ret = (_Rows==Dynamic || _Cols==Dynamic) ? Dynamic : _Rows * _Cols };
};
template<typename T, int Sparseness = ei_traits<T>::Flags&SparseBit> class ei_eval;
template<typename T> class ei_eval<T,Dense>
{
typedef typename ei_traits<T>::Scalar _Scalar;
enum {_Rows = ei_traits<T>::RowsAtCompileTime,
_Cols = ei_traits<T>::ColsAtCompileTime,
_MaxRows = ei_traits<T>::MaxRowsAtCompileTime,
_MaxCols = ei_traits<T>::MaxColsAtCompileTime,
_Flags = ei_traits<T>::Flags
};
public:
typedef Matrix<_Scalar,
_Rows, _Cols, _MaxRows, _MaxCols,
ei_corrected_matrix_flags<
_Scalar,
_Rows, _Cols, _MaxRows, _MaxCols,
_Flags
>::ret
> type;
};
template<typename T> struct ei_unref { typedef T type; };
template<typename T> struct ei_unref<T&> { typedef T type; };
template<typename T> struct ei_unconst { typedef T type; };
template<typename T> struct ei_unconst<const T> { typedef T type; };
template<typename T> struct ei_cleantype { typedef T type; };
template<typename T> struct ei_cleantype<const T> { typedef T type; };
template<typename T> struct ei_cleantype<const T&> { typedef T type; };
template<typename T> struct ei_cleantype<T&> { typedef T type; };
template<typename T> struct ei_must_nest_by_value { enum { ret = false }; };
template<typename T> struct ei_must_nest_by_value<NestByValue<T> > { enum { ret = true }; };
template<typename T, int n=1, typename EvalType = typename ei_eval<T>::type> struct ei_nested
{
typedef typename ei_meta_if<
ei_must_nest_by_value<T>::ret,
T,
typename ei_meta_if<
(int(ei_traits<T>::Flags) & EvalBeforeNestingBit)
|| ((n+1) * int(NumTraits<typename ei_traits<T>::Scalar>::ReadCost) <= (n-1) * int(T::CoeffReadCost)),
EvalType,
const T&
>::ret
>::ret type;
};
template<unsigned int Flags> struct ei_are_flags_consistent
{
enum { ret = !( (Flags&UnitDiagBit && Flags&ZeroDiagBit) )
};
};
/** \internal Gives the type of a sub-matrix or sub-vector of a matrix of type \a ExpressionType and size \a Size
* TODO: could be a good idea to define a big ReturnType struct ??
*/
template<typename ExpressionType, int RowsOrSize=Dynamic, int Cols=Dynamic> struct BlockReturnType {
typedef Block<ExpressionType, (ei_traits<ExpressionType>::RowsAtCompileTime == 1 ? 1 : RowsOrSize),
(ei_traits<ExpressionType>::ColsAtCompileTime == 1 ? 1 : RowsOrSize)> SubVectorType;
typedef Block<ExpressionType, RowsOrSize, Cols> Type;
};
#endif // EIGEN_META_H