mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-21 09:09:36 +08:00
209 lines
7.2 KiB
C++
209 lines
7.2 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_TRANSLATION_H
|
|
#define EIGEN_TRANSLATION_H
|
|
|
|
namespace Eigen {
|
|
|
|
/** \geometry_module \ingroup Geometry_Module
|
|
*
|
|
* \class Translation
|
|
*
|
|
* \brief Represents a translation transformation
|
|
*
|
|
* \tparam _Scalar the scalar type, i.e., the type of the coefficients.
|
|
* \tparam _Dim the dimension of the space, can be a compile time value or Dynamic
|
|
*
|
|
* \note This class is not aimed to be used to store a translation transformation,
|
|
* but rather to make easier the constructions and updates of Transform objects.
|
|
*
|
|
* \sa class Scaling, class Transform
|
|
*/
|
|
template<typename _Scalar, int _Dim>
|
|
class Translation
|
|
{
|
|
public:
|
|
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim)
|
|
/** dimension of the space */
|
|
enum { Dim = _Dim };
|
|
/** the scalar type of the coefficients */
|
|
typedef _Scalar Scalar;
|
|
/** corresponding vector type */
|
|
typedef Matrix<Scalar,Dim,1> VectorType;
|
|
/** corresponding linear transformation matrix type */
|
|
typedef Matrix<Scalar,Dim,Dim> LinearMatrixType;
|
|
/** corresponding affine transformation type */
|
|
typedef Transform<Scalar,Dim,Affine> AffineTransformType;
|
|
/** corresponding isometric transformation type */
|
|
typedef Transform<Scalar,Dim,Isometry> IsometryTransformType;
|
|
|
|
protected:
|
|
|
|
VectorType m_coeffs;
|
|
|
|
public:
|
|
|
|
/** Default constructor without initialization. */
|
|
Translation() {}
|
|
/** */
|
|
inline Translation(const Scalar& sx, const Scalar& sy)
|
|
{
|
|
eigen_assert(Dim==2);
|
|
m_coeffs.x() = sx;
|
|
m_coeffs.y() = sy;
|
|
}
|
|
/** */
|
|
inline Translation(const Scalar& sx, const Scalar& sy, const Scalar& sz)
|
|
{
|
|
eigen_assert(Dim==3);
|
|
m_coeffs.x() = sx;
|
|
m_coeffs.y() = sy;
|
|
m_coeffs.z() = sz;
|
|
}
|
|
/** Constructs and initialize the translation transformation from a vector of translation coefficients */
|
|
explicit inline Translation(const VectorType& vector) : m_coeffs(vector) {}
|
|
|
|
/** \brief Retruns the x-translation by value. **/
|
|
inline Scalar x() const { return m_coeffs.x(); }
|
|
/** \brief Retruns the y-translation by value. **/
|
|
inline Scalar y() const { return m_coeffs.y(); }
|
|
/** \brief Retruns the z-translation by value. **/
|
|
inline Scalar z() const { return m_coeffs.z(); }
|
|
|
|
/** \brief Retruns the x-translation as a reference. **/
|
|
inline Scalar& x() { return m_coeffs.x(); }
|
|
/** \brief Retruns the y-translation as a reference. **/
|
|
inline Scalar& y() { return m_coeffs.y(); }
|
|
/** \brief Retruns the z-translation as a reference. **/
|
|
inline Scalar& z() { return m_coeffs.z(); }
|
|
|
|
const VectorType& vector() const { return m_coeffs; }
|
|
VectorType& vector() { return m_coeffs; }
|
|
|
|
const VectorType& translation() const { return m_coeffs; }
|
|
VectorType& translation() { return m_coeffs; }
|
|
|
|
/** Concatenates two translation */
|
|
inline Translation operator* (const Translation& other) const
|
|
{ return Translation(m_coeffs + other.m_coeffs); }
|
|
|
|
/** Concatenates a translation and a uniform scaling */
|
|
inline AffineTransformType operator* (const UniformScaling<Scalar>& other) const;
|
|
|
|
/** Concatenates a translation and a linear transformation */
|
|
template<typename OtherDerived>
|
|
inline AffineTransformType operator* (const EigenBase<OtherDerived>& linear) const;
|
|
|
|
/** Concatenates a translation and a rotation */
|
|
template<typename Derived>
|
|
inline IsometryTransformType operator*(const RotationBase<Derived,Dim>& r) const
|
|
{ return *this * IsometryTransformType(r); }
|
|
|
|
/** \returns the concatenation of a linear transformation \a l with the translation \a t */
|
|
// its a nightmare to define a templated friend function outside its declaration
|
|
template<typename OtherDerived> friend
|
|
inline AffineTransformType operator*(const EigenBase<OtherDerived>& linear, const Translation& t)
|
|
{
|
|
AffineTransformType res;
|
|
res.matrix().setZero();
|
|
res.linear() = linear.derived();
|
|
res.translation() = linear.derived() * t.m_coeffs;
|
|
res.matrix().row(Dim).setZero();
|
|
res(Dim,Dim) = Scalar(1);
|
|
return res;
|
|
}
|
|
|
|
/** Concatenates a translation and a transformation */
|
|
template<int Mode, int Options>
|
|
inline Transform<Scalar,Dim,Mode> operator* (const Transform<Scalar,Dim,Mode,Options>& t) const
|
|
{
|
|
Transform<Scalar,Dim,Mode> res = t;
|
|
res.pretranslate(m_coeffs);
|
|
return res;
|
|
}
|
|
|
|
/** Applies translation to vector */
|
|
template<typename Derived>
|
|
inline typename internal::enable_if<Derived::IsVectorAtCompileTime,VectorType>::type
|
|
operator* (const MatrixBase<Derived>& vec) const
|
|
{ return m_coeffs + vec.derived(); }
|
|
|
|
/** \returns the inverse translation (opposite) */
|
|
Translation inverse() const { return Translation(-m_coeffs); }
|
|
|
|
Translation& operator=(const Translation& other)
|
|
{
|
|
m_coeffs = other.m_coeffs;
|
|
return *this;
|
|
}
|
|
|
|
static const Translation Identity() { return Translation(VectorType::Zero()); }
|
|
|
|
/** \returns \c *this with scalar type casted to \a NewScalarType
|
|
*
|
|
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
|
|
* then this function smartly returns a const reference to \c *this.
|
|
*/
|
|
template<typename NewScalarType>
|
|
inline typename internal::cast_return_type<Translation,Translation<NewScalarType,Dim> >::type cast() const
|
|
{ return typename internal::cast_return_type<Translation,Translation<NewScalarType,Dim> >::type(*this); }
|
|
|
|
/** Copy constructor with scalar type conversion */
|
|
template<typename OtherScalarType>
|
|
inline explicit Translation(const Translation<OtherScalarType,Dim>& other)
|
|
{ m_coeffs = other.vector().template cast<Scalar>(); }
|
|
|
|
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
|
|
* determined by \a prec.
|
|
*
|
|
* \sa MatrixBase::isApprox() */
|
|
bool isApprox(const Translation& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
|
|
{ return m_coeffs.isApprox(other.m_coeffs, prec); }
|
|
|
|
};
|
|
|
|
/** \addtogroup Geometry_Module */
|
|
//@{
|
|
typedef Translation<float, 2> Translation2f;
|
|
typedef Translation<double,2> Translation2d;
|
|
typedef Translation<float, 3> Translation3f;
|
|
typedef Translation<double,3> Translation3d;
|
|
//@}
|
|
|
|
template<typename Scalar, int Dim>
|
|
inline typename Translation<Scalar,Dim>::AffineTransformType
|
|
Translation<Scalar,Dim>::operator* (const UniformScaling<Scalar>& other) const
|
|
{
|
|
AffineTransformType res;
|
|
res.matrix().setZero();
|
|
res.linear().diagonal().fill(other.factor());
|
|
res.translation() = m_coeffs;
|
|
res(Dim,Dim) = Scalar(1);
|
|
return res;
|
|
}
|
|
|
|
template<typename Scalar, int Dim>
|
|
template<typename OtherDerived>
|
|
inline typename Translation<Scalar,Dim>::AffineTransformType
|
|
Translation<Scalar,Dim>::operator* (const EigenBase<OtherDerived>& linear) const
|
|
{
|
|
AffineTransformType res;
|
|
res.matrix().setZero();
|
|
res.linear() = linear.derived();
|
|
res.translation() = m_coeffs;
|
|
res.matrix().row(Dim).setZero();
|
|
res(Dim,Dim) = Scalar(1);
|
|
return res;
|
|
}
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_TRANSLATION_H
|