mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-05-02 16:54:10 +08:00
355 lines
14 KiB
C++
355 lines
14 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_CUDA_H
|
|
#define EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_CUDA_H
|
|
|
|
namespace Eigen {
|
|
namespace internal {
|
|
|
|
|
|
#if defined(EIGEN_USE_GPU) && defined(__CUDACC__)
|
|
// Full reducers for GPU, don't vectorize for now
|
|
|
|
// Reducer function that enables multiple cuda thread to safely accumulate at the same
|
|
// output address. It basically reads the current value of the output variable, and
|
|
// attempts to update it with the new value. If in the meantime another cuda thread
|
|
// updated the content of the output address it will try again.
|
|
template <typename T, typename R>
|
|
__device__ EIGEN_ALWAYS_INLINE void atomicReduce(T* output, T accum, R& reducer) {
|
|
#if __CUDA_ARCH__ >= 300
|
|
if (sizeof(T) == 4)
|
|
{
|
|
unsigned int oldval = *reinterpret_cast<unsigned int*>(output);
|
|
unsigned int newval = oldval;
|
|
reducer.reduce(accum, reinterpret_cast<T*>(&newval));
|
|
if (newval == oldval) {
|
|
return;
|
|
}
|
|
unsigned int readback;
|
|
while ((readback = atomicCAS((unsigned int*)output, oldval, newval)) != oldval) {
|
|
oldval = readback;
|
|
newval = oldval;
|
|
reducer.reduce(accum, reinterpret_cast<T*>(&newval));
|
|
if (newval == oldval) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
else if (sizeof(T) == 8) {
|
|
unsigned long long oldval = *reinterpret_cast<unsigned long long*>(output);
|
|
unsigned long long newval = oldval;
|
|
reducer.reduce(accum, reinterpret_cast<T*>(&newval));
|
|
if (newval == oldval) {
|
|
return;
|
|
}
|
|
unsigned long long readback;
|
|
while ((readback = atomicCAS((unsigned long long*)output, oldval, newval)) != oldval) {
|
|
oldval = readback;
|
|
newval = oldval;
|
|
reducer.reduce(accum, reinterpret_cast<T*>(&newval));
|
|
if (newval == oldval) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
assert(0 && "Wordsize not supported");
|
|
}
|
|
#else
|
|
assert(0 && "Shouldn't be called on unsupported device");
|
|
#endif
|
|
}
|
|
|
|
template <typename T>
|
|
__device__ inline void atomicReduce(T* output, T accum, SumReducer<T>&) {
|
|
#if __CUDA_ARCH__ >= 300
|
|
atomicAdd(output, accum);
|
|
#else
|
|
assert(0 && "Shouldn't be called on unsupported device");
|
|
#endif
|
|
}
|
|
|
|
|
|
template <typename CoeffType, typename Index>
|
|
__global__ void ReductionInitKernel(const CoeffType val, Index num_preserved_coeffs, CoeffType* output) {
|
|
const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x;
|
|
const Index num_threads = blockDim.x * gridDim.x;
|
|
for (Index i = thread_id; i < num_preserved_coeffs; i += num_threads) {
|
|
output[i] = val;
|
|
}
|
|
}
|
|
|
|
template <int BlockSize, int NumPerThread, typename Self,
|
|
typename Reducer, typename Index>
|
|
__global__ void FullReductionKernel(Reducer reducer, const Self input, Index num_coeffs,
|
|
typename Self::CoeffReturnType* output) {
|
|
const Index first_index = blockIdx.x * BlockSize * NumPerThread + threadIdx.x;
|
|
|
|
// Initialize the output value if it wasn't initialized by the ReductionInitKernel
|
|
if (gridDim.x == 1 && first_index == 0) {
|
|
*output = reducer.initialize();
|
|
}
|
|
|
|
typename Self::CoeffReturnType accum = reducer.initialize();
|
|
Index max_iter = numext::mini<Index>(num_coeffs - first_index, NumPerThread*BlockSize);
|
|
for (Index i = 0; i < max_iter; i+=BlockSize) {
|
|
const Index index = first_index + i;
|
|
eigen_assert(index < num_coeffs);
|
|
typename Self::CoeffReturnType val = input.m_impl.coeff(index);
|
|
reducer.reduce(val, &accum);
|
|
}
|
|
|
|
#pragma unroll
|
|
for (int offset = warpSize/2; offset > 0; offset /= 2) {
|
|
reducer.reduce(__shfl_down(accum, offset), &accum);
|
|
}
|
|
|
|
if ((threadIdx.x & (warpSize - 1)) == 0) {
|
|
atomicReduce(output, accum, reducer);
|
|
}
|
|
}
|
|
|
|
|
|
template <typename Self, typename Op, bool Vectorizable>
|
|
struct FullReducer<Self, Op, GpuDevice, Vectorizable> {
|
|
// Unfortunately nvidia doesn't support well exotic types such as complex,
|
|
// so reduce the scope of the optimized version of the code to the simple case
|
|
// of floats.
|
|
static const bool HasOptimizedImplementation = !Op::IsStateful &&
|
|
internal::is_same<typename Self::CoeffReturnType, float>::value;
|
|
|
|
template <typename OutputType>
|
|
static EIGEN_DEVICE_FUNC void run(const Self&, Op&, const GpuDevice&, OutputType*) {
|
|
assert(false && "Should only be called on floats");
|
|
}
|
|
|
|
static EIGEN_DEVICE_FUNC void run(const Self& self, Op& reducer, const GpuDevice& device, float* output) {
|
|
typedef typename Self::Index Index;
|
|
|
|
const Index num_coeffs = array_prod(self.m_impl.dimensions());
|
|
const int block_size = 256;
|
|
const int num_per_thread = 128;
|
|
const int num_blocks = numext::ceil(static_cast<float>(num_coeffs) / (block_size * num_per_thread));
|
|
|
|
if (num_blocks > 1) {
|
|
// We initialize the outputs outside the reduction kernel when we can't be sure that there
|
|
// won't be a race conditions between multiple thread blocks.
|
|
LAUNCH_CUDA_KERNEL((ReductionInitKernel<float, Index>),
|
|
1, 32, 0, device, reducer.initialize(), 1, output);
|
|
}
|
|
|
|
LAUNCH_CUDA_KERNEL((FullReductionKernel<block_size, num_per_thread, Self, Op, Index>),
|
|
num_blocks, block_size, 0, device, reducer, self, num_coeffs, output);
|
|
}
|
|
};
|
|
|
|
|
|
template <int NumPerThread, typename Self,
|
|
typename Reducer, typename Index>
|
|
__global__ void InnerReductionKernel(Reducer reducer, const Self input, Index num_coeffs_to_reduce, Index num_preserved_coeffs,
|
|
typename Self::CoeffReturnType* output) {
|
|
eigen_assert(blockDim.y == 1);
|
|
eigen_assert(blockDim.z == 1);
|
|
eigen_assert(gridDim.y == 1);
|
|
eigen_assert(gridDim.z == 1);
|
|
|
|
const int unroll_times = 16;
|
|
eigen_assert(NumPerThread % unroll_times == 0);
|
|
|
|
const Index input_col_blocks = divup<Index>(num_coeffs_to_reduce, blockDim.x * NumPerThread);
|
|
const Index num_input_blocks = input_col_blocks * num_preserved_coeffs;
|
|
|
|
const Index num_threads = blockDim.x * gridDim.x;
|
|
const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
// Initialize the output values if they weren't initialized by the ReductionInitKernel
|
|
if (gridDim.x == 1) {
|
|
for (Index i = thread_id; i < num_preserved_coeffs; i += num_threads) {
|
|
output[i] = reducer.initialize();
|
|
}
|
|
}
|
|
|
|
for (Index i = blockIdx.x; i < num_input_blocks; i += gridDim.x) {
|
|
const Index row = i / input_col_blocks;
|
|
|
|
if (row < num_preserved_coeffs) {
|
|
const Index col_block = i % input_col_blocks;
|
|
const Index col_begin = col_block * blockDim.x * NumPerThread + threadIdx.x;
|
|
|
|
float reduced_val = reducer.initialize();
|
|
|
|
for (Index j = 0; j < NumPerThread; j += unroll_times) {
|
|
const Index last_col = col_begin + blockDim.x * (j + unroll_times - 1);
|
|
if (last_col >= num_coeffs_to_reduce) {
|
|
for (Index col = col_begin + blockDim.x * j; col < num_coeffs_to_reduce; col +=blockDim.x) {
|
|
const float val = input.m_impl.coeff(row * num_coeffs_to_reduce + col);
|
|
reducer.reduce(val, &reduced_val);
|
|
}
|
|
break;
|
|
} else {
|
|
// Faster version of the loop with no branches after unrolling.
|
|
#pragma unroll
|
|
for (int k = 0; k < unroll_times; ++k) {
|
|
const Index col = col_begin + blockDim.x * (j + k);
|
|
reducer.reduce(input.m_impl.coeff(row * num_coeffs_to_reduce + col), &reduced_val);
|
|
}
|
|
}
|
|
}
|
|
|
|
#pragma unroll
|
|
for (int offset = warpSize/2; offset > 0; offset /= 2) {
|
|
reducer.reduce(__shfl_down(reduced_val, offset), &reduced_val);
|
|
}
|
|
|
|
if ((threadIdx.x & (warpSize - 1)) == 0) {
|
|
atomicReduce(&(output[row]), reduced_val, reducer);
|
|
}
|
|
}
|
|
|
|
__syncthreads();
|
|
}
|
|
}
|
|
|
|
template <typename Self, typename Op>
|
|
struct InnerReducer<Self, Op, GpuDevice> {
|
|
// Unfortunately nvidia doesn't support well exotic types such as complex,
|
|
// so reduce the scope of the optimized version of the code to the simple case
|
|
// of floats.
|
|
static const bool HasOptimizedImplementation = !Op::IsStateful &&
|
|
internal::is_same<typename Self::CoeffReturnType, float>::value;
|
|
|
|
template <typename Device, typename OutputType>
|
|
static EIGEN_DEVICE_FUNC bool run(const Self&, Op&, const Device&, OutputType*, typename Self::Index, typename Self::Index) {
|
|
assert(false && "Should only be called to reduce floats on a gpu device");
|
|
return true;
|
|
}
|
|
|
|
static EIGEN_DEVICE_FUNC bool run(const Self& self, Op& reducer, const GpuDevice& device, float* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) {
|
|
typedef typename Self::Index Index;
|
|
|
|
// It's faster to use the usual code.
|
|
if (num_coeffs_to_reduce <= 32) {
|
|
return true;
|
|
}
|
|
|
|
const Index num_coeffs = num_coeffs_to_reduce * num_preserved_vals;
|
|
const int block_size = 256;
|
|
const int num_per_thread = 128;
|
|
const int dyn_blocks = divup<int>(num_coeffs, block_size * num_per_thread);
|
|
const int max_blocks = device.getNumCudaMultiProcessors() *
|
|
device.maxCudaThreadsPerMultiProcessor() / block_size;
|
|
const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks);
|
|
|
|
if (num_blocks > 1) {
|
|
// We initialize the outputs outside the reduction kernel when we can't be sure that there
|
|
// won't be a race conditions between multiple thread blocks.
|
|
const int dyn_blocks = divup<int>(num_preserved_vals, 1024);
|
|
const int max_blocks = device.getNumCudaMultiProcessors() *
|
|
device.maxCudaThreadsPerMultiProcessor() / 1024;
|
|
const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks);
|
|
LAUNCH_CUDA_KERNEL((ReductionInitKernel<float, Index>),
|
|
num_blocks, 1024, 0, device, reducer.initialize(),
|
|
num_preserved_vals, output);
|
|
}
|
|
|
|
LAUNCH_CUDA_KERNEL((InnerReductionKernel<num_per_thread, Self, Op, Index>),
|
|
num_blocks, block_size, 0, device, reducer, self, num_coeffs_to_reduce, num_preserved_vals, output);
|
|
|
|
return false;
|
|
}
|
|
};
|
|
|
|
|
|
template <int NumPerThread, typename Self,
|
|
typename Reducer, typename Index>
|
|
__global__ void OuterReductionKernel(Reducer reducer, const Self input, Index num_coeffs_to_reduce, Index num_preserved_coeffs,
|
|
typename Self::CoeffReturnType* output) {
|
|
const Index num_threads = blockDim.x * gridDim.x;
|
|
const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x;
|
|
// Initialize the output values if they weren't initialized by the ReductionInitKernel
|
|
if (gridDim.x == 1) {
|
|
for (Index i = thread_id; i < num_preserved_coeffs; i += num_threads) {
|
|
output[i] = reducer.initialize();
|
|
}
|
|
}
|
|
|
|
// Do the reduction.
|
|
const Index max_iter = num_preserved_coeffs * divup<Index>(num_coeffs_to_reduce, NumPerThread);
|
|
for (Index i = thread_id; i < max_iter; i += num_threads) {
|
|
const Index input_col = i % num_preserved_coeffs;
|
|
const Index input_row = (i / num_preserved_coeffs) * NumPerThread;
|
|
typename Self::CoeffReturnType reduced_val = reducer.initialize();
|
|
const Index max_row = numext::mini(input_row + NumPerThread, num_coeffs_to_reduce);
|
|
for (Index j = input_row; j < max_row; j++) {
|
|
typename Self::CoeffReturnType val = input.m_impl.coeff(j * num_preserved_coeffs + input_col);
|
|
reducer.reduce(val, &reduced_val);
|
|
}
|
|
atomicReduce(&(output[input_col]), reduced_val, reducer);
|
|
}
|
|
}
|
|
|
|
|
|
template <typename Self, typename Op>
|
|
struct OuterReducer<Self, Op, GpuDevice> {
|
|
// Unfortunately nvidia doesn't support well exotic types such as complex,
|
|
// so reduce the scope of the optimized version of the code to the simple case
|
|
// of floats.
|
|
static const bool HasOptimizedImplementation = !Op::IsStateful &&
|
|
internal::is_same<typename Self::CoeffReturnType, float>::value;
|
|
|
|
template <typename Device, typename OutputType>
|
|
static EIGEN_DEVICE_FUNC bool run(const Self&, Op&, const Device&, OutputType*, typename Self::Index, typename Self::Index) {
|
|
assert(false && "Should only be called to reduce floats on a gpu device");
|
|
return true;
|
|
}
|
|
|
|
static EIGEN_DEVICE_FUNC bool run(const Self& self, Op& reducer, const GpuDevice& device, float* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) {
|
|
typedef typename Self::Index Index;
|
|
|
|
// It's faster to use the usual code.
|
|
if (num_coeffs_to_reduce <= 32) {
|
|
return true;
|
|
}
|
|
|
|
const Index num_coeffs = num_coeffs_to_reduce * num_preserved_vals;
|
|
const int block_size = 256;
|
|
const int num_per_thread = 16;
|
|
const int dyn_blocks = divup<int>(num_coeffs, block_size * num_per_thread);
|
|
const int max_blocks = device.getNumCudaMultiProcessors() *
|
|
device.maxCudaThreadsPerMultiProcessor() / block_size;
|
|
const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks);
|
|
|
|
if (num_blocks > 1) {
|
|
// We initialize the outputs in the reduction kernel itself when we don't have to worry
|
|
// about race conditions between multiple thread blocks.
|
|
const int dyn_blocks = divup<int>(num_preserved_vals, 1024);
|
|
const int max_blocks = device.getNumCudaMultiProcessors() *
|
|
device.maxCudaThreadsPerMultiProcessor() / 1024;
|
|
const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks);
|
|
LAUNCH_CUDA_KERNEL((ReductionInitKernel<float, Index>),
|
|
num_blocks, 1024, 0, device, reducer.initialize(),
|
|
num_preserved_vals, output);
|
|
}
|
|
|
|
LAUNCH_CUDA_KERNEL((OuterReductionKernel<num_per_thread, Self, Op, Index>),
|
|
num_blocks, block_size, 0, device, reducer, self, num_coeffs_to_reduce, num_preserved_vals, output);
|
|
|
|
return false;
|
|
}
|
|
};
|
|
|
|
#endif
|
|
|
|
|
|
} // end namespace internal
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_CUDA_H
|