eigen/Eigen/src/Core/Part.h
Benoit Jacob 89f468671d * replace postfix ++ by prefix ++ wherever that makes sense in Eigen/
* fix some "unused variable" warnings in the tests; there remains a libstdc++ "deprecated"
warning which I haven't looked much into
2008-12-17 14:30:01 +00:00

378 lines
13 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_PART_H
#define EIGEN_PART_H
/** \class Part
*
* \brief Expression of a triangular matrix extracted from a given matrix
*
* \param MatrixType the type of the object in which we are taking the triangular part
* \param Mode the kind of triangular matrix expression to construct. Can be Upper, StrictlyUpper,
* UnitUpper, Lower, StrictlyLower, UnitLower. This is in fact a bit field; it must have either
* UpperTriangularBit or LowerTriangularBit, and additionnaly it may have either ZeroDiagBit or
* UnitDiagBit.
*
* This class represents an expression of the upper or lower triangular part of
* a square matrix, possibly with a further assumption on the diagonal. It is the return type
* of MatrixBase::part() and most of the time this is the only way it is used.
*
* \sa MatrixBase::part()
*/
template<typename MatrixType, unsigned int Mode>
struct ei_traits<Part<MatrixType, Mode> >
{
typedef typename MatrixType::Scalar Scalar;
typedef typename ei_nested<MatrixType>::type MatrixTypeNested;
typedef typename ei_unref<MatrixTypeNested>::type _MatrixTypeNested;
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
Flags = (_MatrixTypeNested::Flags & (HereditaryBits) & (~(PacketAccessBit | DirectAccessBit | LinearAccessBit))) | Mode,
CoeffReadCost = _MatrixTypeNested::CoeffReadCost
};
};
template<typename MatrixType, unsigned int Mode> class Part
: public MatrixBase<Part<MatrixType, Mode> >
{
public:
EIGEN_GENERIC_PUBLIC_INTERFACE(Part)
inline Part(const MatrixType& matrix) : m_matrix(matrix)
{ ei_assert(ei_are_flags_consistent<Mode>::ret); }
/** \sa MatrixBase::operator+=() */
template<typename Other> Part& operator+=(const Other& other);
/** \sa MatrixBase::operator-=() */
template<typename Other> Part& operator-=(const Other& other);
/** \sa MatrixBase::operator*=() */
Part& operator*=(const typename ei_traits<MatrixType>::Scalar& other);
/** \sa MatrixBase::operator/=() */
Part& operator/=(const typename ei_traits<MatrixType>::Scalar& other);
/** \sa operator=(), MatrixBase::lazyAssign() */
template<typename Other> void lazyAssign(const Other& other);
/** \sa MatrixBase::operator=() */
template<typename Other> Part& operator=(const Other& other);
inline int rows() const { return m_matrix.rows(); }
inline int cols() const { return m_matrix.cols(); }
inline int stride() const { return m_matrix.stride(); }
inline Scalar coeff(int row, int col) const
{
// SelfAdjointBit doesn't play any role here: just because a matrix is selfadjoint doesn't say anything about
// each individual coefficient, except for the not-very-useful-here fact that diagonal coefficients are real.
if( ((Flags & LowerTriangularBit) && (col>row)) || ((Flags & UpperTriangularBit) && (row>col)) )
return (Scalar)0;
if(Flags & UnitDiagBit)
return col==row ? (Scalar)1 : m_matrix.coeff(row, col);
else if(Flags & ZeroDiagBit)
return col==row ? (Scalar)0 : m_matrix.coeff(row, col);
else
return m_matrix.coeff(row, col);
}
inline Scalar& coeffRef(int row, int col)
{
EIGEN_STATIC_ASSERT(!(Flags & UnitDiagBit), writing_to_triangular_part_with_unit_diagonal_is_not_supported)
EIGEN_STATIC_ASSERT(!(Flags & SelfAdjointBit), coefficient_write_access_to_selfadjoint_not_supported)
ei_assert( (Mode==Upper && col>=row)
|| (Mode==Lower && col<=row)
|| (Mode==StrictlyUpper && col>row)
|| (Mode==StrictlyLower && col<row));
return m_matrix.const_cast_derived().coeffRef(row, col);
}
/** \internal */
const MatrixType& _expression() const { return m_matrix; }
/** discard any writes to a row */
const Block<Part, 1, ColsAtCompileTime> row(int i) { return Base::row(i); }
const Block<Part, 1, ColsAtCompileTime> row(int i) const { return Base::row(i); }
/** discard any writes to a column */
const Block<Part, RowsAtCompileTime, 1> col(int i) { return Base::col(i); }
const Block<Part, RowsAtCompileTime, 1> col(int i) const { return Base::col(i); }
template<typename OtherDerived/*, int OtherMode*/>
void swap(const MatrixBase<OtherDerived>& other)
{
Part<SwapWrapper<MatrixType>,Mode>(SwapWrapper<MatrixType>(const_cast<MatrixType&>(m_matrix))).lazyAssign(other.derived());
}
protected:
const typename MatrixType::Nested m_matrix;
};
/** \returns an expression of a triangular matrix extracted from the current matrix
*
* The parameter \a Mode can have the following values: \c Upper, \c StrictlyUpper, \c UnitUpper,
* \c Lower, \c StrictlyLower, \c UnitLower.
*
* \addexample PartExample \label How to extract a triangular part of an arbitrary matrix
*
* Example: \include MatrixBase_extract.cpp
* Output: \verbinclude MatrixBase_extract.out
*
* \sa class Part, part(), marked()
*/
template<typename Derived>
template<unsigned int Mode>
const Part<Derived, Mode> MatrixBase<Derived>::part() const
{
return derived();
}
template<typename MatrixType, unsigned int Mode>
template<typename Other>
inline Part<MatrixType, Mode>& Part<MatrixType, Mode>::operator=(const Other& other)
{
if(Other::Flags & EvalBeforeAssigningBit)
{
typename ei_eval<Other>::type other_evaluated(other.rows(), other.cols());
other_evaluated.template part<Mode>().lazyAssign(other);
lazyAssign(other_evaluated);
}
else
lazyAssign(other.derived());
return *this;
}
template<typename Derived1, typename Derived2, unsigned int Mode, int UnrollCount>
struct ei_part_assignment_impl
{
enum {
col = (UnrollCount-1) / Derived1::RowsAtCompileTime,
row = (UnrollCount-1) % Derived1::RowsAtCompileTime
};
inline static void run(Derived1 &dst, const Derived2 &src)
{
ei_part_assignment_impl<Derived1, Derived2, Mode, UnrollCount-1>::run(dst, src);
if(Mode == SelfAdjoint)
{
if(row == col)
dst.coeffRef(row, col) = ei_real(src.coeff(row, col));
else if(row < col)
dst.coeffRef(col, row) = ei_conj(dst.coeffRef(row, col) = src.coeff(row, col));
}
else
{
ei_assert(Mode == Upper || Mode == Lower || Mode == StrictlyUpper || Mode == StrictlyLower);
if((Mode == Upper && row <= col)
|| (Mode == Lower && row >= col)
|| (Mode == StrictlyUpper && row < col)
|| (Mode == StrictlyLower && row > col))
dst.copyCoeff(row, col, src);
}
}
};
template<typename Derived1, typename Derived2, unsigned int Mode>
struct ei_part_assignment_impl<Derived1, Derived2, Mode, 1>
{
inline static void run(Derived1 &dst, const Derived2 &src)
{
if(!(Mode & ZeroDiagBit))
dst.copyCoeff(0, 0, src);
}
};
// prevent buggy user code from causing an infinite recursion
template<typename Derived1, typename Derived2, unsigned int Mode>
struct ei_part_assignment_impl<Derived1, Derived2, Mode, 0>
{
inline static void run(Derived1 &, const Derived2 &) {}
};
template<typename Derived1, typename Derived2>
struct ei_part_assignment_impl<Derived1, Derived2, Upper, Dynamic>
{
inline static void run(Derived1 &dst, const Derived2 &src)
{
for(int j = 0; j < dst.cols(); ++j)
for(int i = 0; i <= j; ++i)
dst.copyCoeff(i, j, src);
}
};
template<typename Derived1, typename Derived2>
struct ei_part_assignment_impl<Derived1, Derived2, Lower, Dynamic>
{
inline static void run(Derived1 &dst, const Derived2 &src)
{
for(int j = 0; j < dst.cols(); ++j)
for(int i = j; i < dst.rows(); ++i)
dst.copyCoeff(i, j, src);
}
};
template<typename Derived1, typename Derived2>
struct ei_part_assignment_impl<Derived1, Derived2, StrictlyUpper, Dynamic>
{
inline static void run(Derived1 &dst, const Derived2 &src)
{
for(int j = 0; j < dst.cols(); ++j)
for(int i = 0; i < j; ++i)
dst.copyCoeff(i, j, src);
}
};
template<typename Derived1, typename Derived2>
struct ei_part_assignment_impl<Derived1, Derived2, StrictlyLower, Dynamic>
{
inline static void run(Derived1 &dst, const Derived2 &src)
{
for(int j = 0; j < dst.cols(); ++j)
for(int i = j+1; i < dst.rows(); ++i)
dst.copyCoeff(i, j, src);
}
};
template<typename Derived1, typename Derived2>
struct ei_part_assignment_impl<Derived1, Derived2, SelfAdjoint, Dynamic>
{
inline static void run(Derived1 &dst, const Derived2 &src)
{
for(int j = 0; j < dst.cols(); ++j)
{
for(int i = 0; i < j; ++i)
dst.coeffRef(j, i) = ei_conj(dst.coeffRef(i, j) = src.coeff(i, j));
dst.coeffRef(j, j) = ei_real(src.coeff(j, j));
}
}
};
template<typename MatrixType, unsigned int Mode>
template<typename Other>
void Part<MatrixType, Mode>::lazyAssign(const Other& other)
{
const bool unroll = MatrixType::SizeAtCompileTime * Other::CoeffReadCost / 2 <= EIGEN_UNROLLING_LIMIT;
ei_assert(m_matrix.rows() == other.rows() && m_matrix.cols() == other.cols());
ei_part_assignment_impl
<MatrixType, Other, Mode,
unroll ? int(MatrixType::SizeAtCompileTime) : Dynamic
>::run(m_matrix.const_cast_derived(), other.derived());
}
/** \returns a lvalue pseudo-expression allowing to perform special operations on \c *this.
*
* The \a Mode parameter can have the following values: \c Upper, \c StrictlyUpper, \c Lower,
* \c StrictlyLower, \c SelfAdjoint.
*
* \addexample PartExample \label How to write to a triangular part of a matrix
*
* Example: \include MatrixBase_part.cpp
* Output: \verbinclude MatrixBase_part.out
*
* \sa class Part, MatrixBase::extract(), MatrixBase::marked()
*/
template<typename Derived>
template<unsigned int Mode>
inline Part<Derived, Mode> MatrixBase<Derived>::part()
{
return Part<Derived, Mode>(derived());
}
/** \returns true if *this is approximately equal to an upper triangular matrix,
* within the precision given by \a prec.
*
* \sa isLower(), extract(), part(), marked()
*/
template<typename Derived>
bool MatrixBase<Derived>::isUpper(RealScalar prec) const
{
if(cols() != rows()) return false;
RealScalar maxAbsOnUpperPart = static_cast<RealScalar>(-1);
for(int j = 0; j < cols(); ++j)
for(int i = 0; i <= j; ++i)
{
RealScalar absValue = ei_abs(coeff(i,j));
if(absValue > maxAbsOnUpperPart) maxAbsOnUpperPart = absValue;
}
for(int j = 0; j < cols()-1; ++j)
for(int i = j+1; i < rows(); ++i)
if(!ei_isMuchSmallerThan(coeff(i, j), maxAbsOnUpperPart, prec)) return false;
return true;
}
/** \returns true if *this is approximately equal to a lower triangular matrix,
* within the precision given by \a prec.
*
* \sa isUpper(), extract(), part(), marked()
*/
template<typename Derived>
bool MatrixBase<Derived>::isLower(RealScalar prec) const
{
if(cols() != rows()) return false;
RealScalar maxAbsOnLowerPart = static_cast<RealScalar>(-1);
for(int j = 0; j < cols(); ++j)
for(int i = j; i < rows(); ++i)
{
RealScalar absValue = ei_abs(coeff(i,j));
if(absValue > maxAbsOnLowerPart) maxAbsOnLowerPart = absValue;
}
for(int j = 1; j < cols(); ++j)
for(int i = 0; i < j; ++i)
if(!ei_isMuchSmallerThan(coeff(i, j), maxAbsOnLowerPart, prec)) return false;
return true;
}
template<typename MatrixType, unsigned int Mode>
template<typename Other>
inline Part<MatrixType, Mode>& Part<MatrixType, Mode>::operator+=(const Other& other)
{
return *this = m_matrix + other;
}
template<typename MatrixType, unsigned int Mode>
template<typename Other>
inline Part<MatrixType, Mode>& Part<MatrixType, Mode>::operator-=(const Other& other)
{
return *this = m_matrix - other;
}
template<typename MatrixType, unsigned int Mode>
inline Part<MatrixType, Mode>& Part<MatrixType, Mode>::operator*=
(const typename ei_traits<MatrixType>::Scalar& other)
{
return *this = m_matrix * other;
}
template<typename MatrixType, unsigned int Mode>
inline Part<MatrixType, Mode>& Part<MatrixType, Mode>::operator/=
(const typename ei_traits<MatrixType>::Scalar& other)
{
return *this = m_matrix / other;
}
#endif // EIGEN_PART_H