2009-08-23 05:55:43 +02:00

370 lines
8.5 KiB
C++

template<typename Functor, typename Scalar>
int ei_lmdif(
Matrix< Scalar, Dynamic, 1 > &x,
Matrix< Scalar, Dynamic, 1 > &fvec,
int &nfev,
Matrix< Scalar, Dynamic, Dynamic > &fjac,
VectorXi &ipvt,
Matrix< Scalar, Dynamic, 1 > &qtf,
Matrix< Scalar, Dynamic, 1 > &diag,
int mode=1,
Scalar factor = 100.,
int maxfev = 400,
Scalar ftol = ei_sqrt(epsilon<Scalar>()),
Scalar xtol = ei_sqrt(epsilon<Scalar>()),
Scalar gtol = Scalar(0.),
Scalar epsfcn = Scalar(0.),
int nprint=0
)
{
const int m = fvec.size(), n = x.size();
Matrix< Scalar, Dynamic, 1 >
wa1(n), wa2(n), wa3(n),
wa4(m);
int ldfjac = m;
ipvt.resize(n);
fjac.resize(ldfjac, n);
diag.resize(n);
qtf.resize(n);
/* Local variables */
int i, j, l;
Scalar par, sum;
int iter;
Scalar temp, temp1, temp2;
int iflag;
Scalar delta;
Scalar ratio;
Scalar fnorm, gnorm;
Scalar pnorm, xnorm, fnorm1, actred, dirder, prered;
int info;
/* Function Body */
info = 0;
iflag = 0;
nfev = 0;
/* check the input parameters for errors. */
if (n <= 0 || m < n || ldfjac < m || ftol < 0. || xtol < 0. ||
gtol < 0. || maxfev <= 0 || factor <= 0.) {
goto L300;
}
if (mode == 2)
for (j = 0; j < n; ++j)
if (diag[j] <= 0.)
goto L300;
/* evaluate the function at the starting point */
/* and calculate its norm. */
iflag = Functor::f(x, fvec);
nfev = 1;
if (iflag < 0) {
goto L300;
}
fnorm = fvec.stableNorm();
/* initialize levenberg-marquardt parameter and iteration counter. */
par = 0.;
iter = 1;
/* beginning of the outer loop. */
L30:
/* calculate the jacobian matrix. */
iflag = ei_fdjac2<Functor,Scalar>(x, fvec, fjac, epsfcn, wa4);
nfev += n;
if (iflag < 0) {
goto L300;
}
/* if requested, call Functor::f to enable printing of iterates. */
if (nprint <= 0) {
goto L40;
}
iflag = 0;
if ((iter - 1) % nprint == 0) {
iflag = Functor::debug(x, fvec);
}
if (iflag < 0) {
goto L300;
}
L40:
/* compute the qr factorization of the jacobian. */
ei_qrfac<Scalar>(m, n, fjac.data(), ldfjac, true, ipvt.data(), n, wa1.data(), wa2.data(), wa3.data());
ipvt.cwise()-=1; // qrfac() creates ipvt with fortran convetion (1->n), convert it to c (0->n-1)
/* on the first iteration and if mode is 1, scale according */
/* to the norms of the columns of the initial jacobian. */
if (iter != 1) {
goto L80;
}
if (mode == 2) {
goto L60;
}
for (j = 0; j < n; ++j) {
diag[j] = wa2[j];
if (wa2[j] == 0.) {
diag[j] = 1.;
}
/* L50: */
}
L60:
/* on the first iteration, calculate the norm of the scaled x */
/* and initialize the step bound delta. */
wa3 = diag.cwise() * x;
xnorm = wa3.stableNorm();;
delta = factor * xnorm;
if (delta == 0.) {
delta = factor;
}
L80:
/* form (q transpose)*fvec and store the first n components in */
/* qtf. */
wa4 = fvec;
for (j = 0; j < n; ++j) {
if (fjac[j + j * ldfjac] == 0.) {
goto L120;
}
sum = 0.;
for (i = j; i < m; ++i) {
sum += fjac[i + j * ldfjac] * wa4[i];
/* L100: */
}
temp = -sum / fjac[j + j * ldfjac];
for (i = j; i < m; ++i) {
wa4[i] += fjac[i + j * ldfjac] * temp;
/* L110: */
}
L120:
fjac[j + j * ldfjac] = wa1[j];
qtf[j] = wa4[j];
/* L130: */
}
/* compute the norm of the scaled gradient. */
gnorm = 0.;
if (fnorm == 0.) {
goto L170;
}
for (j = 0; j < n; ++j) {
l = ipvt[j];
if (wa2[l] == 0.) {
goto L150;
}
sum = 0.;
for (i = 0; i <= j; ++i) {
sum += fjac[i + j * ldfjac] * (qtf[i] / fnorm);
/* L140: */
}
/* Computing MAX */
gnorm = std::max(gnorm, ei_abs(sum / wa2[l]));
L150:
/* L160: */
;
}
L170:
/* test for convergence of the gradient norm. */
if (gnorm <= gtol) {
info = 4;
}
if (info != 0) {
goto L300;
}
/* rescale if necessary. */
if (mode == 2) {
goto L190;
}
for (j = 0; j < n; ++j) /* Computing MAX */
diag[j] = std::max(diag[j], wa2[j]);
L190:
/* beginning of the inner loop. */
L200:
/* determine the levenberg-marquardt parameter. */
ipvt.cwise()+=1; // lmpar() expects the fortran convention (as qrfac provides)
ei_lmpar<Scalar>(n, fjac.data(), ldfjac, ipvt.data(), diag.data(), qtf.data(), delta,
par, wa1.data(), wa2.data(), wa3.data(), wa4.data());
ipvt.cwise()-=1;
/* store the direction p and x + p. calculate the norm of p. */
wa1 = -wa1;
wa2 = x + wa1;
wa3 = diag.cwise() * wa1;
pnorm = wa3.stableNorm();
/* on the first iteration, adjust the initial step bound. */
if (iter == 1) {
delta = std::min(delta,pnorm);
}
/* evaluate the function at x + p and calculate its norm. */
iflag = Functor::f(wa2, wa4);
++nfev;
if (iflag < 0) {
goto L300;
}
fnorm1 = wa4.stableNorm();
/* compute the scaled actual reduction. */
actred = -1.;
if (Scalar(.1) * fnorm1 < fnorm) /* Computing 2nd power */
actred = 1. - ei_abs2(fnorm1 / fnorm);
/* compute the scaled predicted reduction and */
/* the scaled directional derivative. */
for (j = 0; j < n; ++j) {
wa3[j] = 0.;
l = ipvt[j];
temp = wa1[l];
for (i = 0; i <= j; ++i) {
wa3[i] += fjac[i + j * ldfjac] * temp;
/* L220: */
}
/* L230: */
}
temp1 = ei_abs2(wa3.stableNorm() / fnorm);
temp2 = ei_abs2(ei_sqrt(par) * pnorm / fnorm);
/* Computing 2nd power */
prered = temp1 + temp2 / Scalar(.5);
dirder = -(temp1 + temp2);
/* compute the ratio of the actual to the predicted */
/* reduction. */
ratio = 0.;
if (prered != 0.) {
ratio = actred / prered;
}
/* update the step bound. */
if (ratio > Scalar(.25)) {
goto L240;
}
if (actred >= 0.) {
temp = Scalar(.5);
}
if (actred < 0.) {
temp = Scalar(.5) * dirder / (dirder + Scalar(.5) * actred);
}
if (Scalar(.1) * fnorm1 >= fnorm || temp < Scalar(.1)) {
temp = Scalar(.1);
}
/* Computing MIN */
delta = temp * std::min(delta, pnorm / Scalar(.1));
par /= temp;
goto L260;
L240:
if (par != 0. && ratio < Scalar(.75)) {
goto L250;
}
delta = pnorm / Scalar(.5);
par = Scalar(.5) * par;
L250:
L260:
/* test for successful iteration. */
if (ratio < Scalar(1e-4)) {
goto L290;
}
/* successful iteration. update x, fvec, and their norms. */
x = wa2;
wa2 = diag.cwise() * x;
fvec = wa4;
xnorm = wa2.stableNorm();
fnorm = fnorm1;
++iter;
L290:
/* tests for convergence. */
if (ei_abs(actred) <= ftol && prered <= ftol && Scalar(.5) * ratio <= 1.) {
info = 1;
}
if (delta <= xtol * xnorm) {
info = 2;
}
if (ei_abs(actred) <= ftol && prered <= ftol && Scalar(.5) * ratio <= 1. && info
== 2) {
info = 3;
}
if (info != 0) {
goto L300;
}
/* tests for termination and stringent tolerances. */
if (nfev >= maxfev) {
info = 5;
}
if (ei_abs(actred) <= epsilon<Scalar>() && prered <= epsilon<Scalar>() && Scalar(.5) * ratio <= 1.) {
info = 6;
}
if (delta <= epsilon<Scalar>() * xnorm) {
info = 7;
}
if (gnorm <= epsilon<Scalar>()) {
info = 8;
}
if (info != 0) {
goto L300;
}
/* end of the inner loop. repeat if iteration unsuccessful. */
if (ratio < Scalar(1e-4)) {
goto L200;
}
/* end of the outer loop. */
goto L30;
L300:
/* termination, either normal or user imposed. */
if (iflag < 0) {
info = iflag;
}
iflag = 0;
if (nprint > 0) {
iflag = Functor::debug(x, fvec);
}
return info;
/* last card of subroutine lmdif. */
} /* lmdif_ */