mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-06-03 10:14:04 +08:00
268 lines
12 KiB
C++
268 lines
12 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2012 Giacomo Po <gpo@ucla.edu>
|
|
// Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
// Copyright (C) 2018 David Hyde <dabh@stanford.edu>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
|
|
#ifndef EIGEN_MINRES_H_
|
|
#define EIGEN_MINRES_H_
|
|
|
|
|
|
namespace Eigen {
|
|
|
|
namespace internal {
|
|
|
|
/** \internal Low-level MINRES algorithm
|
|
* \param mat The matrix A
|
|
* \param rhs The right hand side vector b
|
|
* \param x On input and initial solution, on output the computed solution.
|
|
* \param precond A right preconditioner being able to efficiently solve for an
|
|
* approximation of Ax=b (regardless of b)
|
|
* \param iters On input the max number of iteration, on output the number of performed iterations.
|
|
* \param tol_error On input the tolerance error, on output an estimation of the relative error.
|
|
*/
|
|
template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
|
|
EIGEN_DONT_INLINE
|
|
void minres(const MatrixType& mat, const Rhs& rhs, Dest& x,
|
|
const Preconditioner& precond, Index& iters,
|
|
typename Dest::RealScalar& tol_error)
|
|
{
|
|
using std::sqrt;
|
|
typedef typename Dest::RealScalar RealScalar;
|
|
typedef typename Dest::Scalar Scalar;
|
|
typedef Matrix<Scalar,Dynamic,1> VectorType;
|
|
|
|
// Check for zero rhs
|
|
const RealScalar rhsNorm2(rhs.squaredNorm());
|
|
if(rhsNorm2 == 0)
|
|
{
|
|
x.setZero();
|
|
iters = 0;
|
|
tol_error = 0;
|
|
return;
|
|
}
|
|
|
|
// initialize
|
|
const Index maxIters(iters); // initialize maxIters to iters
|
|
const Index N(mat.cols()); // the size of the matrix
|
|
const RealScalar threshold2(tol_error*tol_error*rhsNorm2); // convergence threshold (compared to residualNorm2)
|
|
|
|
// Initialize preconditioned Lanczos
|
|
VectorType v_old(N); // will be initialized inside loop
|
|
VectorType v( VectorType::Zero(N) ); //initialize v
|
|
VectorType v_new(rhs-mat*x); //initialize v_new
|
|
RealScalar residualNorm2(v_new.squaredNorm());
|
|
VectorType w(N); // will be initialized inside loop
|
|
VectorType w_new(precond.solve(v_new)); // initialize w_new
|
|
// RealScalar beta; // will be initialized inside loop
|
|
RealScalar beta_new2(v_new.dot(w_new));
|
|
eigen_assert(beta_new2 >= 0.0 && "PRECONDITIONER IS NOT POSITIVE DEFINITE");
|
|
RealScalar beta_new(sqrt(beta_new2));
|
|
const RealScalar beta_one(beta_new);
|
|
// Initialize other variables
|
|
RealScalar c(1.0); // the cosine of the Givens rotation
|
|
RealScalar c_old(1.0);
|
|
RealScalar s(0.0); // the sine of the Givens rotation
|
|
RealScalar s_old(0.0); // the sine of the Givens rotation
|
|
VectorType p_oold(N); // will be initialized in loop
|
|
VectorType p_old(VectorType::Zero(N)); // initialize p_old=0
|
|
VectorType p(p_old); // initialize p=0
|
|
RealScalar eta(1.0);
|
|
|
|
iters = 0; // reset iters
|
|
while ( iters < maxIters )
|
|
{
|
|
// Preconditioned Lanczos
|
|
/* Note that there are 4 variants on the Lanczos algorithm. These are
|
|
* described in Paige, C. C. (1972). Computational variants of
|
|
* the Lanczos method for the eigenproblem. IMA Journal of Applied
|
|
* Mathematics, 10(3), 373-381. The current implementation corresponds
|
|
* to the case A(2,7) in the paper. It also corresponds to
|
|
* algorithm 6.14 in Y. Saad, Iterative Methods for Sparse Linear
|
|
* Systems, 2003 p.173. For the preconditioned version see
|
|
* A. Greenbaum, Iterative Methods for Solving Linear Systems, SIAM (1987).
|
|
*/
|
|
const RealScalar beta(beta_new);
|
|
v_old = v; // update: at first time step, this makes v_old = 0 so value of beta doesn't matter
|
|
v_new /= beta_new; // overwrite v_new for next iteration
|
|
w_new /= beta_new; // overwrite w_new for next iteration
|
|
v = v_new; // update
|
|
w = w_new; // update
|
|
v_new.noalias() = mat*w - beta*v_old; // compute v_new
|
|
const RealScalar alpha = v_new.dot(w);
|
|
v_new -= alpha*v; // overwrite v_new
|
|
w_new = precond.solve(v_new); // overwrite w_new
|
|
beta_new2 = v_new.dot(w_new); // compute beta_new
|
|
eigen_assert(beta_new2 >= 0.0 && "PRECONDITIONER IS NOT POSITIVE DEFINITE");
|
|
beta_new = sqrt(beta_new2); // compute beta_new
|
|
|
|
// Givens rotation
|
|
const RealScalar r2 =s*alpha+c*c_old*beta; // s, s_old, c and c_old are still from previous iteration
|
|
const RealScalar r3 =s_old*beta; // s, s_old, c and c_old are still from previous iteration
|
|
const RealScalar r1_hat=c*alpha-c_old*s*beta;
|
|
const RealScalar r1 =sqrt( std::pow(r1_hat,2) + std::pow(beta_new,2) );
|
|
c_old = c; // store for next iteration
|
|
s_old = s; // store for next iteration
|
|
c=r1_hat/r1; // new cosine
|
|
s=beta_new/r1; // new sine
|
|
|
|
// Update solution
|
|
p_oold = p_old;
|
|
p_old = p;
|
|
p.noalias()=(w-r2*p_old-r3*p_oold) /r1; // IS NOALIAS REQUIRED?
|
|
x += beta_one*c*eta*p;
|
|
|
|
/* Update the squared residual. Note that this is the estimated residual.
|
|
The real residual |Ax-b|^2 may be slightly larger */
|
|
residualNorm2 *= s*s;
|
|
|
|
if ( residualNorm2 < threshold2)
|
|
{
|
|
break;
|
|
}
|
|
|
|
eta=-s*eta; // update eta
|
|
iters++; // increment iteration number (for output purposes)
|
|
}
|
|
|
|
/* Compute error. Note that this is the estimated error. The real
|
|
error |Ax-b|/|b| may be slightly larger */
|
|
tol_error = std::sqrt(residualNorm2 / rhsNorm2);
|
|
}
|
|
|
|
}
|
|
|
|
template< typename _MatrixType, int _UpLo=Lower,
|
|
typename _Preconditioner = IdentityPreconditioner>
|
|
class MINRES;
|
|
|
|
namespace internal {
|
|
|
|
template< typename _MatrixType, int _UpLo, typename _Preconditioner>
|
|
struct traits<MINRES<_MatrixType,_UpLo,_Preconditioner> >
|
|
{
|
|
typedef _MatrixType MatrixType;
|
|
typedef _Preconditioner Preconditioner;
|
|
};
|
|
|
|
}
|
|
|
|
/** \ingroup IterativeLinearSolvers_Module
|
|
* \brief A minimal residual solver for sparse symmetric problems
|
|
*
|
|
* This class allows to solve for A.x = b sparse linear problems using the MINRES algorithm
|
|
* of Paige and Saunders (1975). The sparse matrix A must be symmetric (possibly indefinite).
|
|
* The vectors x and b can be either dense or sparse.
|
|
*
|
|
* \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
|
|
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower,
|
|
* Upper, or Lower|Upper in which the full matrix entries will be considered. Default is Lower.
|
|
* \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
|
|
*
|
|
* The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
|
|
* and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
|
|
* and NumTraits<Scalar>::epsilon() for the tolerance.
|
|
*
|
|
* This class can be used as the direct solver classes. Here is a typical usage example:
|
|
* \code
|
|
* int n = 10000;
|
|
* VectorXd x(n), b(n);
|
|
* SparseMatrix<double> A(n,n);
|
|
* // fill A and b
|
|
* MINRES<SparseMatrix<double> > mr;
|
|
* mr.compute(A);
|
|
* x = mr.solve(b);
|
|
* std::cout << "#iterations: " << mr.iterations() << std::endl;
|
|
* std::cout << "estimated error: " << mr.error() << std::endl;
|
|
* // update b, and solve again
|
|
* x = mr.solve(b);
|
|
* \endcode
|
|
*
|
|
* By default the iterations start with x=0 as an initial guess of the solution.
|
|
* One can control the start using the solveWithGuess() method.
|
|
*
|
|
* MINRES can also be used in a matrix-free context, see the following \link MatrixfreeSolverExample example \endlink.
|
|
*
|
|
* \sa class ConjugateGradient, BiCGSTAB, SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
|
|
*/
|
|
template< typename _MatrixType, int _UpLo, typename _Preconditioner>
|
|
class MINRES : public IterativeSolverBase<MINRES<_MatrixType,_UpLo,_Preconditioner> >
|
|
{
|
|
|
|
typedef IterativeSolverBase<MINRES> Base;
|
|
using Base::matrix;
|
|
using Base::m_error;
|
|
using Base::m_iterations;
|
|
using Base::m_info;
|
|
using Base::m_isInitialized;
|
|
public:
|
|
using Base::_solve_impl;
|
|
typedef _MatrixType MatrixType;
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename MatrixType::RealScalar RealScalar;
|
|
typedef _Preconditioner Preconditioner;
|
|
|
|
enum {UpLo = _UpLo};
|
|
|
|
public:
|
|
|
|
/** Default constructor. */
|
|
MINRES() : Base() {}
|
|
|
|
/** Initialize the solver with matrix \a A for further \c Ax=b solving.
|
|
*
|
|
* This constructor is a shortcut for the default constructor followed
|
|
* by a call to compute().
|
|
*
|
|
* \warning this class stores a reference to the matrix A as well as some
|
|
* precomputed values that depend on it. Therefore, if \a A is changed
|
|
* this class becomes invalid. Call compute() to update it with the new
|
|
* matrix A, or modify a copy of A.
|
|
*/
|
|
template<typename MatrixDerived>
|
|
explicit MINRES(const EigenBase<MatrixDerived>& A) : Base(A.derived()) {}
|
|
|
|
/** Destructor. */
|
|
~MINRES(){}
|
|
|
|
/** \internal */
|
|
template<typename Rhs,typename Dest>
|
|
void _solve_vector_with_guess_impl(const Rhs& b, Dest& x) const
|
|
{
|
|
typedef typename Base::MatrixWrapper MatrixWrapper;
|
|
typedef typename Base::ActualMatrixType ActualMatrixType;
|
|
enum {
|
|
TransposeInput = (!MatrixWrapper::MatrixFree)
|
|
&& (UpLo==(Lower|Upper))
|
|
&& (!MatrixType::IsRowMajor)
|
|
&& (!NumTraits<Scalar>::IsComplex)
|
|
};
|
|
typedef typename internal::conditional<TransposeInput,Transpose<const ActualMatrixType>, ActualMatrixType const&>::type RowMajorWrapper;
|
|
EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(MatrixWrapper::MatrixFree,UpLo==(Lower|Upper)),MATRIX_FREE_CONJUGATE_GRADIENT_IS_COMPATIBLE_WITH_UPPER_UNION_LOWER_MODE_ONLY);
|
|
typedef typename internal::conditional<UpLo==(Lower|Upper),
|
|
RowMajorWrapper,
|
|
typename MatrixWrapper::template ConstSelfAdjointViewReturnType<UpLo>::Type
|
|
>::type SelfAdjointWrapper;
|
|
|
|
m_iterations = Base::maxIterations();
|
|
m_error = Base::m_tolerance;
|
|
RowMajorWrapper row_mat(matrix());
|
|
internal::minres(SelfAdjointWrapper(row_mat), b, x,
|
|
Base::m_preconditioner, m_iterations, m_error);
|
|
m_info = m_error <= Base::m_tolerance ? Success : NoConvergence;
|
|
}
|
|
|
|
protected:
|
|
|
|
};
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_MINRES_H
|