eigen/unsupported/test/cxx11_tensor_reduction.cpp
Antonio Sanchez f6c8cc0e99 Fix TensorReduction warnings and error bound for sum accuracy test.
The sum accuracy test currently uses the default test precision for
the given scalar type.  However, scalars are generated via a normal
distribution, and given a large enough count and strong enough random
generator, the expected sum is zero.  This causes the test to
periodically fail.

Here we estimate an upper-bound for the error as `sqrt(N) * prec` for
summing N values, with each having an approximate epsilon of `prec`.

Also fixed a few warnings generated by MSVC when compiling the
reduction test.
2021-10-30 14:59:00 -07:00

546 lines
16 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <limits>
#include <numeric>
#include <Eigen/CXX11/Tensor>
using Eigen::Tensor;
template <int DataLayout>
static void test_trivial_reductions() {
{
Tensor<float, 0, DataLayout> tensor;
tensor.setRandom();
array<ptrdiff_t, 0> reduction_axis;
Tensor<float, 0, DataLayout> result = tensor.sum(reduction_axis);
VERIFY_IS_EQUAL(result(), tensor());
}
{
Tensor<float, 1, DataLayout> tensor(7);
tensor.setRandom();
array<ptrdiff_t, 0> reduction_axis;
Tensor<float, 1, DataLayout> result = tensor.sum(reduction_axis);
VERIFY_IS_EQUAL(result.dimension(0), 7);
for (int i = 0; i < 7; ++i) {
VERIFY_IS_EQUAL(result(i), tensor(i));
}
}
{
Tensor<float, 2, DataLayout> tensor(2, 3);
tensor.setRandom();
array<ptrdiff_t, 0> reduction_axis;
Tensor<float, 2, DataLayout> result = tensor.sum(reduction_axis);
VERIFY_IS_EQUAL(result.dimension(0), 2);
VERIFY_IS_EQUAL(result.dimension(1), 3);
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
VERIFY_IS_EQUAL(result(i, j), tensor(i, j));
}
}
}
}
template <typename Scalar,int DataLayout>
static void test_simple_reductions() {
Tensor<Scalar, 4, DataLayout> tensor(2, 3, 5, 7);
tensor.setRandom();
// Add a little offset so that the product reductions won't be close to zero.
tensor += tensor.constant(Scalar(0.5f));
array<ptrdiff_t, 2> reduction_axis2;
reduction_axis2[0] = 1;
reduction_axis2[1] = 3;
Tensor<Scalar, 2, DataLayout> result = tensor.sum(reduction_axis2);
VERIFY_IS_EQUAL(result.dimension(0), 2);
VERIFY_IS_EQUAL(result.dimension(1), 5);
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 5; ++j) {
Scalar sum = Scalar(0.0f);
for (int k = 0; k < 3; ++k) {
for (int l = 0; l < 7; ++l) {
sum += tensor(i, k, j, l);
}
}
VERIFY_IS_APPROX(result(i, j), sum);
}
}
{
Tensor<Scalar, 0, DataLayout> sum1 = tensor.sum();
VERIFY_IS_EQUAL(sum1.rank(), 0);
array<ptrdiff_t, 4> reduction_axis4;
reduction_axis4[0] = 0;
reduction_axis4[1] = 1;
reduction_axis4[2] = 2;
reduction_axis4[3] = 3;
Tensor<Scalar, 0, DataLayout> sum2 = tensor.sum(reduction_axis4);
VERIFY_IS_EQUAL(sum2.rank(), 0);
VERIFY_IS_APPROX(sum1(), sum2());
}
reduction_axis2[0] = 0;
reduction_axis2[1] = 2;
result = tensor.prod(reduction_axis2);
VERIFY_IS_EQUAL(result.dimension(0), 3);
VERIFY_IS_EQUAL(result.dimension(1), 7);
for (int i = 0; i < 3; ++i) {
for (int j = 0; j < 7; ++j) {
Scalar prod = Scalar(1.0f);
for (int k = 0; k < 2; ++k) {
for (int l = 0; l < 5; ++l) {
prod *= tensor(k, i, l, j);
}
}
VERIFY_IS_APPROX(result(i, j), prod);
}
}
{
Tensor<Scalar, 0, DataLayout> prod1 = tensor.prod();
VERIFY_IS_EQUAL(prod1.rank(), 0);
array<ptrdiff_t, 4> reduction_axis4;
reduction_axis4[0] = 0;
reduction_axis4[1] = 1;
reduction_axis4[2] = 2;
reduction_axis4[3] = 3;
Tensor<Scalar, 0, DataLayout> prod2 = tensor.prod(reduction_axis4);
VERIFY_IS_EQUAL(prod2.rank(), 0);
VERIFY_IS_APPROX(prod1(), prod2());
}
reduction_axis2[0] = 0;
reduction_axis2[1] = 2;
result = tensor.maximum(reduction_axis2);
VERIFY_IS_EQUAL(result.dimension(0), 3);
VERIFY_IS_EQUAL(result.dimension(1), 7);
for (int i = 0; i < 3; ++i) {
for (int j = 0; j < 7; ++j) {
Scalar max_val = std::numeric_limits<Scalar>::lowest();
for (int k = 0; k < 2; ++k) {
for (int l = 0; l < 5; ++l) {
max_val = (std::max)(max_val, tensor(k, i, l, j));
}
}
VERIFY_IS_APPROX(result(i, j), max_val);
}
}
{
Tensor<Scalar, 0, DataLayout> max1 = tensor.maximum();
VERIFY_IS_EQUAL(max1.rank(), 0);
array<ptrdiff_t, 4> reduction_axis4;
reduction_axis4[0] = 0;
reduction_axis4[1] = 1;
reduction_axis4[2] = 2;
reduction_axis4[3] = 3;
Tensor<Scalar, 0, DataLayout> max2 = tensor.maximum(reduction_axis4);
VERIFY_IS_EQUAL(max2.rank(), 0);
VERIFY_IS_APPROX(max1(), max2());
}
reduction_axis2[0] = 0;
reduction_axis2[1] = 1;
result = tensor.minimum(reduction_axis2);
VERIFY_IS_EQUAL(result.dimension(0), 5);
VERIFY_IS_EQUAL(result.dimension(1), 7);
for (int i = 0; i < 5; ++i) {
for (int j = 0; j < 7; ++j) {
Scalar min_val = (std::numeric_limits<Scalar>::max)();
for (int k = 0; k < 2; ++k) {
for (int l = 0; l < 3; ++l) {
min_val = (std::min)(min_val, tensor(k, l, i, j));
}
}
VERIFY_IS_APPROX(result(i, j), min_val);
}
}
{
Tensor<Scalar, 0, DataLayout> min1 = tensor.minimum();
VERIFY_IS_EQUAL(min1.rank(), 0);
array<ptrdiff_t, 4> reduction_axis4;
reduction_axis4[0] = 0;
reduction_axis4[1] = 1;
reduction_axis4[2] = 2;
reduction_axis4[3] = 3;
Tensor<Scalar, 0, DataLayout> min2 = tensor.minimum(reduction_axis4);
VERIFY_IS_EQUAL(min2.rank(), 0);
VERIFY_IS_APPROX(min1(), min2());
}
reduction_axis2[0] = 0;
reduction_axis2[1] = 1;
result = tensor.mean(reduction_axis2);
VERIFY_IS_EQUAL(result.dimension(0), 5);
VERIFY_IS_EQUAL(result.dimension(1), 7);
for (int i = 0; i < 5; ++i) {
for (int j = 0; j < 7; ++j) {
Scalar sum = Scalar(0.0f);
int count = 0;
for (int k = 0; k < 2; ++k) {
for (int l = 0; l < 3; ++l) {
sum += tensor(k, l, i, j);
++count;
}
}
VERIFY_IS_APPROX(result(i, j), sum / Scalar(count));
}
}
{
Tensor<Scalar, 0, DataLayout> mean1 = tensor.mean();
VERIFY_IS_EQUAL(mean1.rank(), 0);
array<ptrdiff_t, 4> reduction_axis4;
reduction_axis4[0] = 0;
reduction_axis4[1] = 1;
reduction_axis4[2] = 2;
reduction_axis4[3] = 3;
Tensor<Scalar, 0, DataLayout> mean2 = tensor.mean(reduction_axis4);
VERIFY_IS_EQUAL(mean2.rank(), 0);
VERIFY_IS_APPROX(mean1(), mean2());
}
{
Tensor<int, 1> ints(10);
std::iota(ints.data(), ints.data() + ints.dimension(0), 0);
TensorFixedSize<bool, Sizes<> > all_;
all_ = ints.all();
VERIFY(!all_());
all_ = (ints >= ints.constant(0)).all();
VERIFY(all_());
TensorFixedSize<bool, Sizes<> > any;
any = (ints > ints.constant(10)).any();
VERIFY(!any());
any = (ints < ints.constant(1)).any();
VERIFY(any());
}
}
template <int DataLayout>
static void test_reductions_in_expr() {
Tensor<float, 4, DataLayout> tensor(2, 3, 5, 7);
tensor.setRandom();
array<ptrdiff_t, 2> reduction_axis2;
reduction_axis2[0] = 1;
reduction_axis2[1] = 3;
Tensor<float, 2, DataLayout> result(2, 5);
result = result.constant(1.0f) - tensor.sum(reduction_axis2);
VERIFY_IS_EQUAL(result.dimension(0), 2);
VERIFY_IS_EQUAL(result.dimension(1), 5);
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 5; ++j) {
float sum = 0.0f;
for (int k = 0; k < 3; ++k) {
for (int l = 0; l < 7; ++l) {
sum += tensor(i, k, j, l);
}
}
VERIFY_IS_APPROX(result(i, j), 1.0f - sum);
}
}
}
template <int DataLayout>
static void test_full_reductions() {
Tensor<float, 2, DataLayout> tensor(2, 3);
tensor.setRandom();
array<ptrdiff_t, 2> reduction_axis;
reduction_axis[0] = 0;
reduction_axis[1] = 1;
Tensor<float, 0, DataLayout> result = tensor.sum(reduction_axis);
VERIFY_IS_EQUAL(result.rank(), 0);
float sum = 0.0f;
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
sum += tensor(i, j);
}
}
VERIFY_IS_APPROX(result(0), sum);
result = tensor.square().sum(reduction_axis).sqrt();
VERIFY_IS_EQUAL(result.rank(), 0);
sum = 0.0f;
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
sum += tensor(i, j) * tensor(i, j);
}
}
VERIFY_IS_APPROX(result(), sqrtf(sum));
}
struct UserReducer {
static const bool PacketAccess = false;
UserReducer(float offset) : offset_(offset) {}
void reduce(const float val, float* accum) { *accum += val * val; }
float initialize() const { return 0; }
float finalize(const float accum) const { return 1.0f / (accum + offset_); }
private:
const float offset_;
};
template <int DataLayout>
static void test_user_defined_reductions() {
Tensor<float, 2, DataLayout> tensor(5, 7);
tensor.setRandom();
array<ptrdiff_t, 1> reduction_axis;
reduction_axis[0] = 1;
UserReducer reducer(10.0f);
Tensor<float, 1, DataLayout> result = tensor.reduce(reduction_axis, reducer);
VERIFY_IS_EQUAL(result.dimension(0), 5);
for (int i = 0; i < 5; ++i) {
float expected = 10.0f;
for (int j = 0; j < 7; ++j) {
expected += tensor(i, j) * tensor(i, j);
}
expected = 1.0f / expected;
VERIFY_IS_APPROX(result(i), expected);
}
}
template <int DataLayout>
static void test_tensor_maps() {
int inputs[2 * 3 * 5 * 7];
TensorMap<Tensor<int, 4, DataLayout> > tensor_map(inputs, 2, 3, 5, 7);
TensorMap<Tensor<const int, 4, DataLayout> > tensor_map_const(inputs, 2, 3, 5,
7);
const TensorMap<Tensor<const int, 4, DataLayout> > tensor_map_const_const(
inputs, 2, 3, 5, 7);
tensor_map.setRandom();
array<ptrdiff_t, 2> reduction_axis;
reduction_axis[0] = 1;
reduction_axis[1] = 3;
Tensor<int, 2, DataLayout> result = tensor_map.sum(reduction_axis);
Tensor<int, 2, DataLayout> result2 = tensor_map_const.sum(reduction_axis);
Tensor<int, 2, DataLayout> result3 =
tensor_map_const_const.sum(reduction_axis);
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 5; ++j) {
int sum = 0;
for (int k = 0; k < 3; ++k) {
for (int l = 0; l < 7; ++l) {
sum += tensor_map(i, k, j, l);
}
}
VERIFY_IS_EQUAL(result(i, j), sum);
VERIFY_IS_EQUAL(result2(i, j), sum);
VERIFY_IS_EQUAL(result3(i, j), sum);
}
}
}
template <int DataLayout>
static void test_static_dims() {
Tensor<float, 4, DataLayout> in(72, 53, 97, 113);
Tensor<float, 2, DataLayout> out(72, 97);
in.setRandom();
#if !EIGEN_HAS_CONSTEXPR
array<int, 2> reduction_axis;
reduction_axis[0] = 1;
reduction_axis[1] = 3;
#else
Eigen::IndexList<Eigen::type2index<1>, Eigen::type2index<3> > reduction_axis;
#endif
out = in.maximum(reduction_axis);
for (int i = 0; i < 72; ++i) {
for (int j = 0; j < 97; ++j) {
float expected = -1e10f;
for (int k = 0; k < 53; ++k) {
for (int l = 0; l < 113; ++l) {
expected = (std::max)(expected, in(i, k, j, l));
}
}
VERIFY_IS_EQUAL(out(i, j), expected);
}
}
}
template <int DataLayout>
static void test_innermost_last_dims() {
Tensor<float, 4, DataLayout> in(72, 53, 97, 113);
Tensor<float, 2, DataLayout> out(97, 113);
in.setRandom();
// Reduce on the innermost dimensions.
#if !EIGEN_HAS_CONSTEXPR
array<int, 2> reduction_axis;
reduction_axis[0] = 0;
reduction_axis[1] = 1;
#else
// This triggers the use of packets for ColMajor.
Eigen::IndexList<Eigen::type2index<0>, Eigen::type2index<1> > reduction_axis;
#endif
out = in.maximum(reduction_axis);
for (int i = 0; i < 97; ++i) {
for (int j = 0; j < 113; ++j) {
float expected = -1e10f;
for (int k = 0; k < 53; ++k) {
for (int l = 0; l < 72; ++l) {
expected = (std::max)(expected, in(l, k, i, j));
}
}
VERIFY_IS_EQUAL(out(i, j), expected);
}
}
}
template <int DataLayout>
static void test_innermost_first_dims() {
Tensor<float, 4, DataLayout> in(72, 53, 97, 113);
Tensor<float, 2, DataLayout> out(72, 53);
in.setRandom();
// Reduce on the innermost dimensions.
#if !EIGEN_HAS_CONSTEXPR
array<int, 2> reduction_axis;
reduction_axis[0] = 2;
reduction_axis[1] = 3;
#else
// This triggers the use of packets for RowMajor.
Eigen::IndexList<Eigen::type2index<2>, Eigen::type2index<3>> reduction_axis;
#endif
out = in.maximum(reduction_axis);
for (int i = 0; i < 72; ++i) {
for (int j = 0; j < 53; ++j) {
float expected = -1e10f;
for (int k = 0; k < 97; ++k) {
for (int l = 0; l < 113; ++l) {
expected = (std::max)(expected, in(i, j, k, l));
}
}
VERIFY_IS_EQUAL(out(i, j), expected);
}
}
}
template <int DataLayout>
static void test_reduce_middle_dims() {
Tensor<float, 4, DataLayout> in(72, 53, 97, 113);
Tensor<float, 2, DataLayout> out(72, 53);
in.setRandom();
// Reduce on the innermost dimensions.
#if !EIGEN_HAS_CONSTEXPR
array<int, 2> reduction_axis;
reduction_axis[0] = 1;
reduction_axis[1] = 2;
#else
// This triggers the use of packets for RowMajor.
Eigen::IndexList<Eigen::type2index<1>, Eigen::type2index<2>> reduction_axis;
#endif
out = in.maximum(reduction_axis);
for (int i = 0; i < 72; ++i) {
for (int j = 0; j < 113; ++j) {
float expected = -1e10f;
for (int k = 0; k < 53; ++k) {
for (int l = 0; l < 97; ++l) {
expected = (std::max)(expected, in(i, k, l, j));
}
}
VERIFY_IS_EQUAL(out(i, j), expected);
}
}
}
template <typename ScalarType, int num_elements, int max_mean>
void test_sum_accuracy() {
Tensor<double, 1> double_tensor(num_elements);
Tensor<ScalarType, 1> tensor(num_elements);
for (double prescribed_mean = 0; prescribed_mean <= max_mean; prescribed_mean = numext::maxi(1.0, prescribed_mean*3.99)) {
// FIXME: NormalRandomGenerator doesn't work in bfloat and half.
double_tensor.setRandom<Eigen::internal::NormalRandomGenerator<double>>();
double_tensor += double_tensor.constant(prescribed_mean);
tensor = double_tensor.cast<ScalarType>();
Tensor<ScalarType, 0> sum;
sum = tensor.sum();
// Compute the reference value in double precsion.
double expected_sum = 0.0;
for (int i = 0; i < num_elements; ++i) {
expected_sum += static_cast<double>(tensor(i));
}
// Scale tolerance to account for # elements. Otherwise, we periodically fail, since
// E[sum] == prescribed_mean == 0 for the first iteration.
double err = Eigen::numext::abs(static_cast<double>(sum()) - expected_sum);
double tol = Eigen::numext::sqrt(num_elements) * static_cast<double>(test_precision<ScalarType>()) * numext::maxi(1.0, prescribed_mean);
VERIFY(err < tol);
}
}
EIGEN_DECLARE_TEST(cxx11_tensor_reduction) {
CALL_SUBTEST(test_trivial_reductions<ColMajor>());
CALL_SUBTEST(test_trivial_reductions<RowMajor>());
CALL_SUBTEST(( test_simple_reductions<float,ColMajor>() ));
CALL_SUBTEST(( test_simple_reductions<float,RowMajor>() ));
CALL_SUBTEST(( test_simple_reductions<Eigen::half,ColMajor>() ));
CALL_SUBTEST(( test_simple_reductions<Eigen::bfloat16,ColMajor>() ));
CALL_SUBTEST(test_reductions_in_expr<ColMajor>());
CALL_SUBTEST(test_reductions_in_expr<RowMajor>());
CALL_SUBTEST(test_full_reductions<ColMajor>());
CALL_SUBTEST(test_full_reductions<RowMajor>());
CALL_SUBTEST(test_user_defined_reductions<ColMajor>());
CALL_SUBTEST(test_user_defined_reductions<RowMajor>());
CALL_SUBTEST(test_tensor_maps<ColMajor>());
CALL_SUBTEST(test_tensor_maps<RowMajor>());
CALL_SUBTEST(test_static_dims<ColMajor>());
CALL_SUBTEST(test_static_dims<RowMajor>());
CALL_SUBTEST(test_innermost_last_dims<ColMajor>());
CALL_SUBTEST(test_innermost_last_dims<RowMajor>());
CALL_SUBTEST(test_innermost_first_dims<ColMajor>());
CALL_SUBTEST(test_innermost_first_dims<RowMajor>());
CALL_SUBTEST(test_reduce_middle_dims<ColMajor>());
CALL_SUBTEST(test_reduce_middle_dims<RowMajor>());
CALL_SUBTEST((test_sum_accuracy<float,10*1024*1024,8*1024>()));
CALL_SUBTEST((test_sum_accuracy<Eigen::bfloat16,10*1024*1024,8*1024>()));
// The range of half is limited to 65519 when using round-to-even,
// so we are severely limited in the size and mean of the tensors
// we can reduce without overflow.
CALL_SUBTEST((test_sum_accuracy<Eigen::half,4*1024,16>()));
CALL_SUBTEST((test_sum_accuracy<Eigen::half,10*1024*1024,0>()));
}