mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-05-01 00:04:14 +08:00
161 lines
5.4 KiB
C++
161 lines
5.4 KiB
C++
//=====================================================
|
|
// File : blitz_LU_solve_interface.hh
|
|
// Author : L. Plagne <laurent.plagne@edf.fr)>
|
|
// Copyright (C) EDF R&D, lun sep 30 14:23:31 CEST 2002
|
|
//=====================================================
|
|
//
|
|
// This program is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License
|
|
// as published by the Free Software Foundation; either version 2
|
|
// of the License, or (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program; if not, write to the Free Software
|
|
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
//
|
|
#ifndef BLITZ_LU_SOLVE_INTERFACE_HH
|
|
#define BLITZ_LU_SOLVE_INTERFACE_HH
|
|
|
|
#include "blitz/array.h"
|
|
#include <vector>
|
|
|
|
BZ_USING_NAMESPACE(blitz)
|
|
|
|
template <class real>
|
|
class blitz_LU_solve_interface : public blitz_interface<real> {
|
|
public:
|
|
typedef typename blitz_interface<real>::gene_matrix gene_matrix;
|
|
typedef typename blitz_interface<real>::gene_vector gene_vector;
|
|
|
|
typedef blitz::Array<int, 1> Pivot_Vector;
|
|
|
|
inline static void new_Pivot_Vector(Pivot_Vector &pivot, int N) { pivot.resize(N); }
|
|
|
|
inline static void free_Pivot_Vector(Pivot_Vector &pivot) { return; }
|
|
|
|
static inline real matrix_vector_product_sliced(const gene_matrix &A, gene_vector B, int row, int col_start,
|
|
int col_end) {
|
|
real somme = 0.;
|
|
|
|
for (int j = col_start; j < col_end + 1; j++) {
|
|
somme += A(row, j) * B(j);
|
|
}
|
|
|
|
return somme;
|
|
}
|
|
|
|
static inline real matrix_matrix_product_sliced(gene_matrix &A, int row, int col_start, int col_end, gene_matrix &B,
|
|
int row_shift, int col) {
|
|
real somme = 0.;
|
|
|
|
for (int j = col_start; j < col_end + 1; j++) {
|
|
somme += A(row, j) * B(j + row_shift, col);
|
|
}
|
|
|
|
return somme;
|
|
}
|
|
|
|
inline static void LU_factor(gene_matrix &LU, Pivot_Vector &pivot, int N) {
|
|
ASSERT(LU.rows() == LU.cols());
|
|
int index_max = 0;
|
|
real big = 0.;
|
|
real theSum = 0.;
|
|
real dum = 0.;
|
|
// Get the implicit scaling information :
|
|
gene_vector ImplicitScaling(N);
|
|
for (int i = 0; i < N; i++) {
|
|
big = 0.;
|
|
for (int j = 0; j < N; j++) {
|
|
if (abs(LU(i, j)) >= big) big = abs(LU(i, j));
|
|
}
|
|
if (big == 0.) {
|
|
INFOS("blitz_LU_factor::Singular matrix");
|
|
exit(0);
|
|
}
|
|
ImplicitScaling(i) = 1. / big;
|
|
}
|
|
// Loop over columns of Crout's method :
|
|
for (int j = 0; j < N; j++) {
|
|
for (int i = 0; i < j; i++) {
|
|
theSum = LU(i, j);
|
|
theSum -= matrix_matrix_product_sliced(LU, i, 0, i - 1, LU, 0, j);
|
|
// theSum -= sum( LU( i, Range( fromStart, i-1 ) )*LU( Range( fromStart, i-1 ), j ) ) ;
|
|
LU(i, j) = theSum;
|
|
}
|
|
|
|
// Search for the largest pivot element :
|
|
big = 0.;
|
|
for (int i = j; i < N; i++) {
|
|
theSum = LU(i, j);
|
|
theSum -= matrix_matrix_product_sliced(LU, i, 0, j - 1, LU, 0, j);
|
|
// theSum -= sum( LU( i, Range( fromStart, j-1 ) )*LU( Range( fromStart, j-1 ), j ) ) ;
|
|
LU(i, j) = theSum;
|
|
if ((ImplicitScaling(i) * abs(theSum)) >= big) {
|
|
dum = ImplicitScaling(i) * abs(theSum);
|
|
big = dum;
|
|
index_max = i;
|
|
}
|
|
}
|
|
// Interchanging rows and the scale factor :
|
|
if (j != index_max) {
|
|
for (int k = 0; k < N; k++) {
|
|
dum = LU(index_max, k);
|
|
LU(index_max, k) = LU(j, k);
|
|
LU(j, k) = dum;
|
|
}
|
|
ImplicitScaling(index_max) = ImplicitScaling(j);
|
|
}
|
|
pivot(j) = index_max;
|
|
if (LU(j, j) == 0.) LU(j, j) = 1.e-20;
|
|
// Divide by the pivot element :
|
|
if (j < N) {
|
|
dum = 1. / LU(j, j);
|
|
for (int i = j + 1; i < N; i++) LU(i, j) *= dum;
|
|
}
|
|
}
|
|
}
|
|
|
|
inline static void LU_solve(const gene_matrix &LU, const Pivot_Vector pivot, gene_vector &B, gene_vector X, int N) {
|
|
// Pour conserver le meme header, on travaille sur X, copie du second-membre B
|
|
X = B.copy();
|
|
ASSERT(LU.rows() == LU.cols());
|
|
firstIndex indI;
|
|
// Forward substitution :
|
|
int ii = 0;
|
|
real theSum = 0.;
|
|
for (int i = 0; i < N; i++) {
|
|
int ip = pivot(i);
|
|
theSum = X(ip);
|
|
// theSum = B( ip ) ;
|
|
X(ip) = X(i);
|
|
// B( ip ) = B( i ) ;
|
|
if (ii) {
|
|
theSum -= matrix_vector_product_sliced(LU, X, i, ii - 1, i - 1);
|
|
// theSum -= sum( LU( i, Range( ii-1, i-1 ) )*X( Range( ii-1, i-1 ) ) ) ;
|
|
// theSum -= sum( LU( i, Range( ii-1, i-1 ) )*B( Range( ii-1, i-1 ) ) ) ;
|
|
} else if (theSum) {
|
|
ii = i + 1;
|
|
}
|
|
X(i) = theSum;
|
|
// B( i ) = theSum ;
|
|
}
|
|
// Backsubstitution :
|
|
for (int i = N - 1; i >= 0; i--) {
|
|
theSum = X(i);
|
|
// theSum = B( i ) ;
|
|
theSum -= matrix_vector_product_sliced(LU, X, i, i + 1, N);
|
|
// theSum -= sum( LU( i, Range( i+1, toEnd ) )*X( Range( i+1, toEnd ) ) ) ;
|
|
// theSum -= sum( LU( i, Range( i+1, toEnd ) )*B( Range( i+1, toEnd ) ) ) ;
|
|
// Store a component of the solution vector :
|
|
X(i) = theSum / LU(i, i);
|
|
// B( i ) = theSum/LU( i, i ) ;
|
|
}
|
|
}
|
|
};
|
|
|
|
#endif
|