eigen/Eigen/src/Geometry/Homogeneous.h
Gael Guennebaud 91b3039013 Change the semantic of the last template parameter of Assignment from "Scalar" to "SFINAE" only.
The previous "Scalar" semantic was obsolete since we allow for different scalar types in the source and destination expressions.
On can still specialize on scalar types through SFINAE and/or assignment functor.
2016-07-04 11:02:00 +02:00

457 lines
18 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_HOMOGENEOUS_H
#define EIGEN_HOMOGENEOUS_H
namespace Eigen {
/** \geometry_module \ingroup Geometry_Module
*
* \class Homogeneous
*
* \brief Expression of one (or a set of) homogeneous vector(s)
*
* \param MatrixType the type of the object in which we are making homogeneous
*
* This class represents an expression of one (or a set of) homogeneous vector(s).
* It is the return type of MatrixBase::homogeneous() and most of the time
* this is the only way it is used.
*
* \sa MatrixBase::homogeneous()
*/
namespace internal {
template<typename MatrixType,int Direction>
struct traits<Homogeneous<MatrixType,Direction> >
: traits<MatrixType>
{
typedef typename traits<MatrixType>::StorageKind StorageKind;
typedef typename ref_selector<MatrixType>::type MatrixTypeNested;
typedef typename remove_reference<MatrixTypeNested>::type _MatrixTypeNested;
enum {
RowsPlusOne = (MatrixType::RowsAtCompileTime != Dynamic) ?
int(MatrixType::RowsAtCompileTime) + 1 : Dynamic,
ColsPlusOne = (MatrixType::ColsAtCompileTime != Dynamic) ?
int(MatrixType::ColsAtCompileTime) + 1 : Dynamic,
RowsAtCompileTime = Direction==Vertical ? RowsPlusOne : MatrixType::RowsAtCompileTime,
ColsAtCompileTime = Direction==Horizontal ? ColsPlusOne : MatrixType::ColsAtCompileTime,
MaxRowsAtCompileTime = RowsAtCompileTime,
MaxColsAtCompileTime = ColsAtCompileTime,
TmpFlags = _MatrixTypeNested::Flags & HereditaryBits,
Flags = ColsAtCompileTime==1 ? (TmpFlags & ~RowMajorBit)
: RowsAtCompileTime==1 ? (TmpFlags | RowMajorBit)
: TmpFlags
};
};
template<typename MatrixType,typename Lhs> struct homogeneous_left_product_impl;
template<typename MatrixType,typename Rhs> struct homogeneous_right_product_impl;
} // end namespace internal
template<typename MatrixType,int _Direction> class Homogeneous
: public MatrixBase<Homogeneous<MatrixType,_Direction> >, internal::no_assignment_operator
{
public:
typedef MatrixType NestedExpression;
enum { Direction = _Direction };
typedef MatrixBase<Homogeneous> Base;
EIGEN_DENSE_PUBLIC_INTERFACE(Homogeneous)
explicit inline Homogeneous(const MatrixType& matrix)
: m_matrix(matrix)
{}
inline Index rows() const { return m_matrix.rows() + (int(Direction)==Vertical ? 1 : 0); }
inline Index cols() const { return m_matrix.cols() + (int(Direction)==Horizontal ? 1 : 0); }
const NestedExpression& nestedExpression() const { return m_matrix; }
template<typename Rhs>
inline const Product<Homogeneous,Rhs>
operator* (const MatrixBase<Rhs>& rhs) const
{
eigen_assert(int(Direction)==Horizontal);
return Product<Homogeneous,Rhs>(*this,rhs.derived());
}
template<typename Lhs> friend
inline const Product<Lhs,Homogeneous>
operator* (const MatrixBase<Lhs>& lhs, const Homogeneous& rhs)
{
eigen_assert(int(Direction)==Vertical);
return Product<Lhs,Homogeneous>(lhs.derived(),rhs);
}
template<typename Scalar, int Dim, int Mode, int Options> friend
inline const Product<Transform<Scalar,Dim,Mode,Options>, Homogeneous >
operator* (const Transform<Scalar,Dim,Mode,Options>& lhs, const Homogeneous& rhs)
{
eigen_assert(int(Direction)==Vertical);
return Product<Transform<Scalar,Dim,Mode,Options>, Homogeneous>(lhs,rhs);
}
template<typename Func>
EIGEN_STRONG_INLINE typename internal::result_of<Func(Scalar,Scalar)>::type
redux(const Func& func) const
{
return func(m_matrix.redux(func), Scalar(1));
}
protected:
typename MatrixType::Nested m_matrix;
};
/** \geometry_module \ingroup Geometry_Module
*
* \return an expression of the equivalent homogeneous vector
*
* \only_for_vectors
*
* Example: \include MatrixBase_homogeneous.cpp
* Output: \verbinclude MatrixBase_homogeneous.out
*
* \sa VectorwiseOp::homogeneous(), class Homogeneous
*/
template<typename Derived>
inline typename MatrixBase<Derived>::HomogeneousReturnType
MatrixBase<Derived>::homogeneous() const
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
return HomogeneousReturnType(derived());
}
/** \geometry_module \ingroup Geometry_Module
*
* \returns a matrix expression of homogeneous column (or row) vectors
*
* Example: \include VectorwiseOp_homogeneous.cpp
* Output: \verbinclude VectorwiseOp_homogeneous.out
*
* \sa MatrixBase::homogeneous(), class Homogeneous */
template<typename ExpressionType, int Direction>
inline Homogeneous<ExpressionType,Direction>
VectorwiseOp<ExpressionType,Direction>::homogeneous() const
{
return HomogeneousReturnType(_expression());
}
/** \geometry_module \ingroup Geometry_Module
*
* \returns an expression of the homogeneous normalized vector of \c *this
*
* Example: \include MatrixBase_hnormalized.cpp
* Output: \verbinclude MatrixBase_hnormalized.out
*
* \sa VectorwiseOp::hnormalized() */
template<typename Derived>
inline const typename MatrixBase<Derived>::HNormalizedReturnType
MatrixBase<Derived>::hnormalized() const
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
return ConstStartMinusOne(derived(),0,0,
ColsAtCompileTime==1?size()-1:1,
ColsAtCompileTime==1?1:size()-1) / coeff(size()-1);
}
/** \geometry_module \ingroup Geometry_Module
*
* \returns an expression of the homogeneous normalized vector of \c *this
*
* Example: \include DirectionWise_hnormalized.cpp
* Output: \verbinclude DirectionWise_hnormalized.out
*
* \sa MatrixBase::hnormalized() */
template<typename ExpressionType, int Direction>
inline const typename VectorwiseOp<ExpressionType,Direction>::HNormalizedReturnType
VectorwiseOp<ExpressionType,Direction>::hnormalized() const
{
return HNormalized_Block(_expression(),0,0,
Direction==Vertical ? _expression().rows()-1 : _expression().rows(),
Direction==Horizontal ? _expression().cols()-1 : _expression().cols()).cwiseQuotient(
Replicate<HNormalized_Factors,
Direction==Vertical ? HNormalized_SizeMinusOne : 1,
Direction==Horizontal ? HNormalized_SizeMinusOne : 1>
(HNormalized_Factors(_expression(),
Direction==Vertical ? _expression().rows()-1:0,
Direction==Horizontal ? _expression().cols()-1:0,
Direction==Vertical ? 1 : _expression().rows(),
Direction==Horizontal ? 1 : _expression().cols()),
Direction==Vertical ? _expression().rows()-1 : 1,
Direction==Horizontal ? _expression().cols()-1 : 1));
}
namespace internal {
template<typename MatrixOrTransformType>
struct take_matrix_for_product
{
typedef MatrixOrTransformType type;
static const type& run(const type &x) { return x; }
};
template<typename Scalar, int Dim, int Mode,int Options>
struct take_matrix_for_product<Transform<Scalar, Dim, Mode, Options> >
{
typedef Transform<Scalar, Dim, Mode, Options> TransformType;
typedef typename internal::add_const<typename TransformType::ConstAffinePart>::type type;
static type run (const TransformType& x) { return x.affine(); }
};
template<typename Scalar, int Dim, int Options>
struct take_matrix_for_product<Transform<Scalar, Dim, Projective, Options> >
{
typedef Transform<Scalar, Dim, Projective, Options> TransformType;
typedef typename TransformType::MatrixType type;
static const type& run (const TransformType& x) { return x.matrix(); }
};
template<typename MatrixType,typename Lhs>
struct traits<homogeneous_left_product_impl<Homogeneous<MatrixType,Vertical>,Lhs> >
{
typedef typename take_matrix_for_product<Lhs>::type LhsMatrixType;
typedef typename remove_all<MatrixType>::type MatrixTypeCleaned;
typedef typename remove_all<LhsMatrixType>::type LhsMatrixTypeCleaned;
typedef typename make_proper_matrix_type<
typename traits<MatrixTypeCleaned>::Scalar,
LhsMatrixTypeCleaned::RowsAtCompileTime,
MatrixTypeCleaned::ColsAtCompileTime,
MatrixTypeCleaned::PlainObject::Options,
LhsMatrixTypeCleaned::MaxRowsAtCompileTime,
MatrixTypeCleaned::MaxColsAtCompileTime>::type ReturnType;
};
template<typename MatrixType,typename Lhs>
struct homogeneous_left_product_impl<Homogeneous<MatrixType,Vertical>,Lhs>
: public ReturnByValue<homogeneous_left_product_impl<Homogeneous<MatrixType,Vertical>,Lhs> >
{
typedef typename traits<homogeneous_left_product_impl>::LhsMatrixType LhsMatrixType;
typedef typename remove_all<LhsMatrixType>::type LhsMatrixTypeCleaned;
typedef typename remove_all<typename LhsMatrixTypeCleaned::Nested>::type LhsMatrixTypeNested;
homogeneous_left_product_impl(const Lhs& lhs, const MatrixType& rhs)
: m_lhs(take_matrix_for_product<Lhs>::run(lhs)),
m_rhs(rhs)
{}
inline Index rows() const { return m_lhs.rows(); }
inline Index cols() const { return m_rhs.cols(); }
template<typename Dest> void evalTo(Dest& dst) const
{
// FIXME investigate how to allow lazy evaluation of this product when possible
dst = Block<const LhsMatrixTypeNested,
LhsMatrixTypeNested::RowsAtCompileTime,
LhsMatrixTypeNested::ColsAtCompileTime==Dynamic?Dynamic:LhsMatrixTypeNested::ColsAtCompileTime-1>
(m_lhs,0,0,m_lhs.rows(),m_lhs.cols()-1) * m_rhs;
dst += m_lhs.col(m_lhs.cols()-1).rowwise()
.template replicate<MatrixType::ColsAtCompileTime>(m_rhs.cols());
}
typename LhsMatrixTypeCleaned::Nested m_lhs;
typename MatrixType::Nested m_rhs;
};
template<typename MatrixType,typename Rhs>
struct traits<homogeneous_right_product_impl<Homogeneous<MatrixType,Horizontal>,Rhs> >
{
typedef typename make_proper_matrix_type<typename traits<MatrixType>::Scalar,
MatrixType::RowsAtCompileTime,
Rhs::ColsAtCompileTime,
MatrixType::PlainObject::Options,
MatrixType::MaxRowsAtCompileTime,
Rhs::MaxColsAtCompileTime>::type ReturnType;
};
template<typename MatrixType,typename Rhs>
struct homogeneous_right_product_impl<Homogeneous<MatrixType,Horizontal>,Rhs>
: public ReturnByValue<homogeneous_right_product_impl<Homogeneous<MatrixType,Horizontal>,Rhs> >
{
typedef typename remove_all<typename Rhs::Nested>::type RhsNested;
homogeneous_right_product_impl(const MatrixType& lhs, const Rhs& rhs)
: m_lhs(lhs), m_rhs(rhs)
{}
inline Index rows() const { return m_lhs.rows(); }
inline Index cols() const { return m_rhs.cols(); }
template<typename Dest> void evalTo(Dest& dst) const
{
// FIXME investigate how to allow lazy evaluation of this product when possible
dst = m_lhs * Block<const RhsNested,
RhsNested::RowsAtCompileTime==Dynamic?Dynamic:RhsNested::RowsAtCompileTime-1,
RhsNested::ColsAtCompileTime>
(m_rhs,0,0,m_rhs.rows()-1,m_rhs.cols());
dst += m_rhs.row(m_rhs.rows()-1).colwise()
.template replicate<MatrixType::RowsAtCompileTime>(m_lhs.rows());
}
typename MatrixType::Nested m_lhs;
typename Rhs::Nested m_rhs;
};
template<typename ArgType,int Direction>
struct evaluator_traits<Homogeneous<ArgType,Direction> >
{
typedef typename storage_kind_to_evaluator_kind<typename ArgType::StorageKind>::Kind Kind;
typedef HomogeneousShape Shape;
};
template<> struct AssignmentKind<DenseShape,HomogeneousShape> { typedef Dense2Dense Kind; };
template<typename ArgType,int Direction>
struct unary_evaluator<Homogeneous<ArgType,Direction>, IndexBased>
: evaluator<typename Homogeneous<ArgType,Direction>::PlainObject >
{
typedef Homogeneous<ArgType,Direction> XprType;
typedef typename XprType::PlainObject PlainObject;
typedef evaluator<PlainObject> Base;
explicit unary_evaluator(const XprType& op)
: Base(), m_temp(op)
{
::new (static_cast<Base*>(this)) Base(m_temp);
}
protected:
PlainObject m_temp;
};
// dense = homogeneous
template< typename DstXprType, typename ArgType, typename Scalar>
struct Assignment<DstXprType, Homogeneous<ArgType,Vertical>, internal::assign_op<Scalar,typename ArgType::Scalar>, Dense2Dense>
{
typedef Homogeneous<ArgType,Vertical> SrcXprType;
static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar,typename ArgType::Scalar> &)
{
dst.template topRows<ArgType::RowsAtCompileTime>(src.nestedExpression().rows()) = src.nestedExpression();
dst.row(dst.rows()-1).setOnes();
}
};
// dense = homogeneous
template< typename DstXprType, typename ArgType, typename Scalar>
struct Assignment<DstXprType, Homogeneous<ArgType,Horizontal>, internal::assign_op<Scalar,typename ArgType::Scalar>, Dense2Dense>
{
typedef Homogeneous<ArgType,Horizontal> SrcXprType;
static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar,typename ArgType::Scalar> &)
{
dst.template leftCols<ArgType::ColsAtCompileTime>(src.nestedExpression().cols()) = src.nestedExpression();
dst.col(dst.cols()-1).setOnes();
}
};
template<typename LhsArg, typename Rhs, int ProductTag>
struct generic_product_impl<Homogeneous<LhsArg,Horizontal>, Rhs, HomogeneousShape, DenseShape, ProductTag>
{
template<typename Dest>
static void evalTo(Dest& dst, const Homogeneous<LhsArg,Horizontal>& lhs, const Rhs& rhs)
{
homogeneous_right_product_impl<Homogeneous<LhsArg,Horizontal>, Rhs>(lhs.nestedExpression(), rhs).evalTo(dst);
}
};
template<typename Lhs,typename Rhs>
struct homogeneous_right_product_refactoring_helper
{
enum {
Dim = Lhs::ColsAtCompileTime,
Rows = Lhs::RowsAtCompileTime
};
typedef typename Rhs::template ConstNRowsBlockXpr<Dim>::Type LinearBlockConst;
typedef typename remove_const<LinearBlockConst>::type LinearBlock;
typedef typename Rhs::ConstRowXpr ConstantColumn;
typedef Replicate<const ConstantColumn,Rows,1> ConstantBlock;
typedef Product<Lhs,LinearBlock,LazyProduct> LinearProduct;
typedef CwiseBinaryOp<internal::scalar_sum_op<typename Lhs::Scalar,typename Rhs::Scalar>, const LinearProduct, const ConstantBlock> Xpr;
};
template<typename Lhs, typename Rhs, int ProductTag>
struct product_evaluator<Product<Lhs, Rhs, LazyProduct>, ProductTag, HomogeneousShape, DenseShape>
: public evaluator<typename homogeneous_right_product_refactoring_helper<typename Lhs::NestedExpression,Rhs>::Xpr>
{
typedef Product<Lhs, Rhs, LazyProduct> XprType;
typedef homogeneous_right_product_refactoring_helper<typename Lhs::NestedExpression,Rhs> helper;
typedef typename helper::ConstantBlock ConstantBlock;
typedef typename helper::Xpr RefactoredXpr;
typedef evaluator<RefactoredXpr> Base;
EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr)
: Base( xpr.lhs().nestedExpression() .lazyProduct( xpr.rhs().template topRows<helper::Dim>(xpr.lhs().nestedExpression().cols()) )
+ ConstantBlock(xpr.rhs().row(xpr.rhs().rows()-1),xpr.lhs().rows(), 1) )
{}
};
template<typename Lhs, typename RhsArg, int ProductTag>
struct generic_product_impl<Lhs, Homogeneous<RhsArg,Vertical>, DenseShape, HomogeneousShape, ProductTag>
{
template<typename Dest>
static void evalTo(Dest& dst, const Lhs& lhs, const Homogeneous<RhsArg,Vertical>& rhs)
{
homogeneous_left_product_impl<Homogeneous<RhsArg,Vertical>, Lhs>(lhs, rhs.nestedExpression()).evalTo(dst);
}
};
template<typename Lhs,typename Rhs>
struct homogeneous_left_product_refactoring_helper
{
enum {
Dim = Rhs::RowsAtCompileTime,
Cols = Rhs::ColsAtCompileTime
};
typedef typename Lhs::template ConstNColsBlockXpr<Dim>::Type LinearBlockConst;
typedef typename remove_const<LinearBlockConst>::type LinearBlock;
typedef typename Lhs::ConstColXpr ConstantColumn;
typedef Replicate<const ConstantColumn,1,Cols> ConstantBlock;
typedef Product<LinearBlock,Rhs,LazyProduct> LinearProduct;
typedef CwiseBinaryOp<internal::scalar_sum_op<typename Lhs::Scalar,typename Rhs::Scalar>, const LinearProduct, const ConstantBlock> Xpr;
};
template<typename Lhs, typename Rhs, int ProductTag>
struct product_evaluator<Product<Lhs, Rhs, LazyProduct>, ProductTag, DenseShape, HomogeneousShape>
: public evaluator<typename homogeneous_left_product_refactoring_helper<Lhs,typename Rhs::NestedExpression>::Xpr>
{
typedef Product<Lhs, Rhs, LazyProduct> XprType;
typedef homogeneous_left_product_refactoring_helper<Lhs,typename Rhs::NestedExpression> helper;
typedef typename helper::ConstantBlock ConstantBlock;
typedef typename helper::Xpr RefactoredXpr;
typedef evaluator<RefactoredXpr> Base;
EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr)
: Base( xpr.lhs().template leftCols<helper::Dim>(xpr.rhs().nestedExpression().rows()) .lazyProduct( xpr.rhs().nestedExpression() )
+ ConstantBlock(xpr.lhs().col(xpr.lhs().cols()-1),1,xpr.rhs().cols()) )
{}
};
template<typename Scalar, int Dim, int Mode,int Options, typename RhsArg, int ProductTag>
struct generic_product_impl<Transform<Scalar,Dim,Mode,Options>, Homogeneous<RhsArg,Vertical>, DenseShape, HomogeneousShape, ProductTag>
{
typedef Transform<Scalar,Dim,Mode,Options> TransformType;
template<typename Dest>
static void evalTo(Dest& dst, const TransformType& lhs, const Homogeneous<RhsArg,Vertical>& rhs)
{
homogeneous_left_product_impl<Homogeneous<RhsArg,Vertical>, TransformType>(lhs, rhs.nestedExpression()).evalTo(dst);
}
};
template<typename ExpressionType, int Side, bool Transposed>
struct permutation_matrix_product<ExpressionType, Side, Transposed, HomogeneousShape>
: public permutation_matrix_product<ExpressionType, Side, Transposed, DenseShape>
{};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_HOMOGENEOUS_H