mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-19 08:09:36 +08:00
358 lines
13 KiB
C++
358 lines
13 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#ifndef EIGEN_TRANSPOSE_H
|
|
#define EIGEN_TRANSPOSE_H
|
|
|
|
/** \class Transpose
|
|
*
|
|
* \brief Expression of the transpose of a matrix
|
|
*
|
|
* \param MatrixType the type of the object of which we are taking the transpose
|
|
*
|
|
* This class represents an expression of the transpose of a matrix.
|
|
* It is the return type of MatrixBase::transpose() and MatrixBase::adjoint()
|
|
* and most of the time this is the only way it is used.
|
|
*
|
|
* \sa MatrixBase::transpose(), MatrixBase::adjoint()
|
|
*/
|
|
template<typename MatrixType>
|
|
struct ei_traits<Transpose<MatrixType> >
|
|
{
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename ei_nested<MatrixType>::type MatrixTypeNested;
|
|
typedef typename ei_unref<MatrixTypeNested>::type _MatrixTypeNested;
|
|
enum {
|
|
RowsAtCompileTime = MatrixType::ColsAtCompileTime,
|
|
ColsAtCompileTime = MatrixType::RowsAtCompileTime,
|
|
MaxRowsAtCompileTime = MatrixType::MaxColsAtCompileTime,
|
|
MaxColsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
|
Flags = ((int(_MatrixTypeNested::Flags) ^ RowMajorBit)
|
|
& ~(LowerTriangularBit | UpperTriangularBit))
|
|
| (int(_MatrixTypeNested::Flags)&UpperTriangularBit ? LowerTriangularBit : 0)
|
|
| (int(_MatrixTypeNested::Flags)&LowerTriangularBit ? UpperTriangularBit : 0),
|
|
CoeffReadCost = _MatrixTypeNested::CoeffReadCost
|
|
};
|
|
};
|
|
|
|
template<typename MatrixType> class Transpose
|
|
: public MatrixBase<Transpose<MatrixType> >
|
|
{
|
|
public:
|
|
|
|
EIGEN_GENERIC_PUBLIC_INTERFACE(Transpose)
|
|
|
|
inline Transpose(const MatrixType& matrix) : m_matrix(matrix) {}
|
|
|
|
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Transpose)
|
|
|
|
inline int rows() const { return m_matrix.cols(); }
|
|
inline int cols() const { return m_matrix.rows(); }
|
|
inline int stride() const { return m_matrix.stride(); }
|
|
inline Scalar* data() { return m_matrix.data(); }
|
|
inline const Scalar* data() const { return m_matrix.data(); }
|
|
|
|
inline Scalar& coeffRef(int row, int col)
|
|
{
|
|
return m_matrix.const_cast_derived().coeffRef(col, row);
|
|
}
|
|
|
|
inline Scalar& coeffRef(int index)
|
|
{
|
|
return m_matrix.const_cast_derived().coeffRef(index);
|
|
}
|
|
|
|
inline const CoeffReturnType coeff(int row, int col) const
|
|
{
|
|
return m_matrix.coeff(col, row);
|
|
}
|
|
|
|
inline const CoeffReturnType coeff(int index) const
|
|
{
|
|
return m_matrix.coeff(index);
|
|
}
|
|
|
|
template<int LoadMode>
|
|
inline const PacketScalar packet(int row, int col) const
|
|
{
|
|
return m_matrix.template packet<LoadMode>(col, row);
|
|
}
|
|
|
|
template<int LoadMode>
|
|
inline void writePacket(int row, int col, const PacketScalar& x)
|
|
{
|
|
m_matrix.const_cast_derived().template writePacket<LoadMode>(col, row, x);
|
|
}
|
|
|
|
template<int LoadMode>
|
|
inline const PacketScalar packet(int index) const
|
|
{
|
|
return m_matrix.template packet<LoadMode>(index);
|
|
}
|
|
|
|
template<int LoadMode>
|
|
inline void writePacket(int index, const PacketScalar& x)
|
|
{
|
|
m_matrix.const_cast_derived().template writePacket<LoadMode>(index, x);
|
|
}
|
|
|
|
/** \internal used for introspection */
|
|
const typename ei_cleantype<typename MatrixType::Nested>::type&
|
|
_expression() const { return m_matrix; }
|
|
|
|
protected:
|
|
const typename MatrixType::Nested m_matrix;
|
|
};
|
|
|
|
/** \returns an expression of the transpose of *this.
|
|
*
|
|
* Example: \include MatrixBase_transpose.cpp
|
|
* Output: \verbinclude MatrixBase_transpose.out
|
|
*
|
|
* \warning If you want to replace a matrix by its own transpose, do \b NOT do this:
|
|
* \code
|
|
* m = m.transpose(); // bug!!! caused by aliasing effect
|
|
* \endcode
|
|
* Instead, use the transposeInPlace() method:
|
|
* \code
|
|
* m.transposeInPlace();
|
|
* \endcode
|
|
* which gives Eigen good opportunities for optimization, or alternatively you can also do:
|
|
* \code
|
|
* m = m.transpose().eval();
|
|
* \endcode
|
|
*
|
|
* \sa transposeInPlace(), adjoint() */
|
|
template<typename Derived>
|
|
inline Transpose<Derived>
|
|
MatrixBase<Derived>::transpose()
|
|
{
|
|
return derived();
|
|
}
|
|
|
|
/** This is the const version of transpose().
|
|
*
|
|
* Make sure you read the warning for transpose() !
|
|
*
|
|
* \sa transposeInPlace(), adjoint() */
|
|
template<typename Derived>
|
|
inline const Transpose<Derived>
|
|
MatrixBase<Derived>::transpose() const
|
|
{
|
|
return derived();
|
|
}
|
|
|
|
/** \returns an expression of the adjoint (i.e. conjugate transpose) of *this.
|
|
*
|
|
* Example: \include MatrixBase_adjoint.cpp
|
|
* Output: \verbinclude MatrixBase_adjoint.out
|
|
*
|
|
* \warning If you want to replace a matrix by its own adjoint, do \b NOT do this:
|
|
* \code
|
|
* m = m.adjoint(); // bug!!! caused by aliasing effect
|
|
* \endcode
|
|
* Instead, use the adjointInPlace() method:
|
|
* \code
|
|
* m.adjointInPlace();
|
|
* \endcode
|
|
* which gives Eigen good opportunities for optimization, or alternatively you can also do:
|
|
* \code
|
|
* m = m.adjoint().eval();
|
|
* \endcode
|
|
*
|
|
* \sa adjointInPlace(), transpose(), conjugate(), class Transpose, class ei_scalar_conjugate_op */
|
|
template<typename Derived>
|
|
inline const typename MatrixBase<Derived>::AdjointReturnType
|
|
MatrixBase<Derived>::adjoint() const
|
|
{
|
|
return transpose().nestByValue();
|
|
}
|
|
|
|
/***************************************************************************
|
|
* "in place" transpose implementation
|
|
***************************************************************************/
|
|
|
|
template<typename MatrixType,
|
|
bool IsSquare = (MatrixType::RowsAtCompileTime == MatrixType::ColsAtCompileTime) && MatrixType::RowsAtCompileTime!=Dynamic>
|
|
struct ei_inplace_transpose_selector;
|
|
|
|
template<typename MatrixType>
|
|
struct ei_inplace_transpose_selector<MatrixType,true> { // square matrix
|
|
static void run(MatrixType& m) {
|
|
m.template triangularView<StrictlyUpperTriangular>().swap(m.transpose());
|
|
}
|
|
};
|
|
|
|
template<typename MatrixType>
|
|
struct ei_inplace_transpose_selector<MatrixType,false> { // non square matrix
|
|
static void run(MatrixType& m) {
|
|
if (m.rows()==m.cols())
|
|
m.template triangularView<StrictlyUpperTriangular>().swap(m.transpose());
|
|
else
|
|
m = m.transpose().eval();
|
|
}
|
|
};
|
|
|
|
/** This is the "in place" version of transpose(): it replaces \c *this by its own transpose.
|
|
* Thus, doing
|
|
* \code
|
|
* m.transposeInPlace();
|
|
* \endcode
|
|
* has the same effect on m as doing
|
|
* \code
|
|
* m = m.transpose().eval();
|
|
* \endcode
|
|
* and is faster and also safer because in the latter line of code, forgetting the eval() results
|
|
* in a bug caused by aliasing.
|
|
*
|
|
* Notice however that this method is only useful if you want to replace a matrix by its own transpose.
|
|
* If you just need the transpose of a matrix, use transpose().
|
|
*
|
|
* \note if the matrix is not square, then \c *this must be a resizable matrix.
|
|
*
|
|
* \sa transpose(), adjoint(), adjointInPlace() */
|
|
template<typename Derived>
|
|
inline void MatrixBase<Derived>::transposeInPlace()
|
|
{
|
|
ei_inplace_transpose_selector<Derived>::run(derived());
|
|
}
|
|
|
|
/***************************************************************************
|
|
* "in place" adjoint implementation
|
|
***************************************************************************/
|
|
|
|
/** This is the "in place" version of adjoint(): it replaces \c *this by its own transpose.
|
|
* Thus, doing
|
|
* \code
|
|
* m.adjointInPlace();
|
|
* \endcode
|
|
* has the same effect on m as doing
|
|
* \code
|
|
* m = m.adjoint().eval();
|
|
* \endcode
|
|
* and is faster and also safer because in the latter line of code, forgetting the eval() results
|
|
* in a bug caused by aliasing.
|
|
*
|
|
* Notice however that this method is only useful if you want to replace a matrix by its own adjoint.
|
|
* If you just need the adjoint of a matrix, use adjoint().
|
|
*
|
|
* \note if the matrix is not square, then \c *this must be a resizable matrix.
|
|
*
|
|
* \sa transpose(), adjoint(), transposeInPlace() */
|
|
template<typename Derived>
|
|
inline void MatrixBase<Derived>::adjointInPlace()
|
|
{
|
|
derived() = adjoint().eval();
|
|
}
|
|
|
|
#ifndef EIGEN_NO_DEBUG
|
|
|
|
// The following is to detect aliasing problems in the following common cases:
|
|
// a = a.transpose()
|
|
// a = a.transpose() + X
|
|
// a = X + a.transpose()
|
|
// a = a.adjoint()
|
|
// a = a.adjoint() + X
|
|
// a = X + a.adjoint()
|
|
|
|
template<typename T, int Access=ei_blas_traits<T>::ActualAccess>
|
|
struct ei_extract_data_selector {
|
|
static typename T::Scalar* run(const T& m)
|
|
{
|
|
return &ei_blas_traits<T>::extract(m).const_cast_derived().coeffRef(0,0);
|
|
}
|
|
};
|
|
|
|
template<typename T>
|
|
struct ei_extract_data_selector<T,NoDirectAccess> {
|
|
static typename T::Scalar* run(const T&) { return 0; }
|
|
};
|
|
|
|
template<typename T> typename T::Scalar* ei_extract_data(const T& m)
|
|
{
|
|
return ei_extract_data_selector<T>::run(m);
|
|
}
|
|
|
|
template<typename Derived>
|
|
template<typename OtherDerived>
|
|
Derived& MatrixBase<Derived>::lazyAssign(const Transpose<OtherDerived>& other)
|
|
{
|
|
ei_assert(ei_extract_data(other) != ei_extract_data(derived())
|
|
&& "aliasing detected during tranposition, please use transposeInPlace()");
|
|
return lazyAssign(static_cast<const MatrixBase<Transpose<OtherDerived> >& >(other));
|
|
}
|
|
|
|
template<typename Derived>
|
|
template<typename DerivedA, typename DerivedB>
|
|
Derived& MatrixBase<Derived>::
|
|
lazyAssign(const CwiseBinaryOp<ei_scalar_sum_op<Scalar>,Transpose<DerivedA>,DerivedB>& other)
|
|
{
|
|
ei_assert(ei_extract_data(derived()) != ei_extract_data(other.lhs())
|
|
&& "aliasing detected during tranposition, please evaluate your expression");
|
|
return lazyAssign(static_cast<const MatrixBase<CwiseBinaryOp<ei_scalar_sum_op<Scalar>,Transpose<DerivedA>,DerivedB> >& >(other));
|
|
}
|
|
|
|
template<typename Derived>
|
|
template<typename DerivedA, typename DerivedB>
|
|
Derived& MatrixBase<Derived>::
|
|
lazyAssign(const CwiseBinaryOp<ei_scalar_sum_op<Scalar>,DerivedA,Transpose<DerivedB> >& other)
|
|
{
|
|
ei_assert(ei_extract_data(derived()) != ei_extract_data(other.rhs())
|
|
&& "aliasing detected during tranposition, please evaluate your expression");
|
|
return lazyAssign(static_cast<const MatrixBase<CwiseBinaryOp<ei_scalar_sum_op<Scalar>,DerivedA,Transpose<DerivedB> > >& >(other));
|
|
}
|
|
|
|
template<typename Derived>
|
|
template<typename OtherDerived> Derived&
|
|
MatrixBase<Derived>::
|
|
lazyAssign(const CwiseUnaryOp<ei_scalar_conjugate_op<Scalar>, NestByValue<Eigen::Transpose<OtherDerived> > >& other)
|
|
{
|
|
ei_assert(ei_extract_data(other) != ei_extract_data(derived())
|
|
&& "aliasing detected during tranposition, please use adjointInPlace()");
|
|
return lazyAssign(static_cast<const MatrixBase<CwiseUnaryOp<ei_scalar_conjugate_op<Scalar>, NestByValue<Eigen::Transpose<OtherDerived> > > >& >(other));
|
|
}
|
|
|
|
template<typename Derived>
|
|
template<typename DerivedA, typename DerivedB>
|
|
Derived& MatrixBase<Derived>::
|
|
lazyAssign(const CwiseBinaryOp<ei_scalar_sum_op<Scalar>,CwiseUnaryOp<ei_scalar_conjugate_op<Scalar>, NestByValue<Eigen::Transpose<DerivedA> > >,DerivedB>& other)
|
|
{
|
|
ei_assert(ei_extract_data(derived()) != ei_extract_data(other.lhs())
|
|
&& "aliasing detected during tranposition, please evaluate your expression");
|
|
return lazyAssign(static_cast<const MatrixBase<CwiseBinaryOp<ei_scalar_sum_op<Scalar>,CwiseUnaryOp<ei_scalar_conjugate_op<Scalar>, NestByValue<Eigen::Transpose<DerivedA> > >,DerivedB> >& >(other));
|
|
}
|
|
|
|
template<typename Derived>
|
|
template<typename DerivedA, typename DerivedB>
|
|
Derived& MatrixBase<Derived>::
|
|
lazyAssign(const CwiseBinaryOp<ei_scalar_sum_op<Scalar>,DerivedA,CwiseUnaryOp<ei_scalar_conjugate_op<Scalar>, NestByValue<Eigen::Transpose<DerivedB> > > >& other)
|
|
{
|
|
ei_assert(ei_extract_data(derived()) != ei_extract_data(other.rhs())
|
|
&& "aliasing detected during tranposition, please evaluate your expression");
|
|
return lazyAssign(static_cast<const MatrixBase<CwiseBinaryOp<ei_scalar_sum_op<Scalar>,DerivedA,CwiseUnaryOp<ei_scalar_conjugate_op<Scalar>, NestByValue<Eigen::Transpose<DerivedB> > > > >& >(other));
|
|
}
|
|
#endif
|
|
|
|
#endif // EIGEN_TRANSPOSE_H
|