mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-06-03 02:03:59 +08:00
391 lines
14 KiB
C++
391 lines
14 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#ifndef EIGEN_SPARSESPARSEPRODUCT_H
|
|
#define EIGEN_SPARSESPARSEPRODUCT_H
|
|
|
|
template<typename Lhs, typename Rhs, typename ResultType>
|
|
static void ei_sparse_product_impl2(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
{
|
|
typedef typename ei_cleantype<Lhs>::type::Scalar Scalar;
|
|
typedef typename ei_cleantype<Lhs>::type::Index Index;
|
|
|
|
// make sure to call innerSize/outerSize since we fake the storage order.
|
|
Index rows = lhs.innerSize();
|
|
Index cols = rhs.outerSize();
|
|
ei_assert(lhs.outerSize() == rhs.innerSize());
|
|
|
|
std::vector<bool> mask(rows,false);
|
|
Matrix<Scalar,Dynamic,1> values(rows);
|
|
Matrix<Index,Dynamic,1> indices(rows);
|
|
|
|
// estimate the number of non zero entries
|
|
float ratioLhs = float(lhs.nonZeros())/(float(lhs.rows())*float(lhs.cols()));
|
|
float avgNnzPerRhsColumn = float(rhs.nonZeros())/float(cols);
|
|
float ratioRes = std::min(ratioLhs * avgNnzPerRhsColumn, 1.f);
|
|
|
|
// int t200 = rows/(log2(200)*1.39);
|
|
// int t = (rows*100)/139;
|
|
|
|
res.resize(rows, cols);
|
|
res.reserve(Index(ratioRes*rows*cols));
|
|
// we compute each column of the result, one after the other
|
|
for (Index j=0; j<cols; ++j)
|
|
{
|
|
|
|
res.startVec(j);
|
|
Index nnz = 0;
|
|
for (typename Rhs::InnerIterator rhsIt(rhs, j); rhsIt; ++rhsIt)
|
|
{
|
|
Scalar y = rhsIt.value();
|
|
Index k = rhsIt.index();
|
|
for (typename Lhs::InnerIterator lhsIt(lhs, k); lhsIt; ++lhsIt)
|
|
{
|
|
Index i = lhsIt.index();
|
|
Scalar x = lhsIt.value();
|
|
if(!mask[i])
|
|
{
|
|
mask[i] = true;
|
|
// values[i] = x * y;
|
|
// indices[nnz] = i;
|
|
++nnz;
|
|
}
|
|
else
|
|
values[i] += x * y;
|
|
}
|
|
}
|
|
// FIXME reserve nnz non zeros
|
|
// FIXME implement fast sort algorithms for very small nnz
|
|
// if the result is sparse enough => use a quick sort
|
|
// otherwise => loop through the entire vector
|
|
// In order to avoid to perform an expensive log2 when the
|
|
// result is clearly very sparse we use a linear bound up to 200.
|
|
// if((nnz<200 && nnz<t200) || nnz * log2(nnz) < t)
|
|
// {
|
|
// if(nnz>1) std::sort(indices.data(),indices.data()+nnz);
|
|
// for(int k=0; k<nnz; ++k)
|
|
// {
|
|
// int i = indices[k];
|
|
// res.insertBackNoCheck(j,i) = values[i];
|
|
// mask[i] = false;
|
|
// }
|
|
// }
|
|
// else
|
|
// {
|
|
// // dense path
|
|
// for(int i=0; i<rows; ++i)
|
|
// {
|
|
// if(mask[i])
|
|
// {
|
|
// mask[i] = false;
|
|
// res.insertBackNoCheck(j,i) = values[i];
|
|
// }
|
|
// }
|
|
// }
|
|
|
|
}
|
|
res.finalize();
|
|
}
|
|
|
|
// perform a pseudo in-place sparse * sparse product assuming all matrices are col major
|
|
template<typename Lhs, typename Rhs, typename ResultType>
|
|
static void ei_sparse_product_impl(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
{
|
|
// return ei_sparse_product_impl2(lhs,rhs,res);
|
|
|
|
typedef typename ei_cleantype<Lhs>::type::Scalar Scalar;
|
|
typedef typename ei_cleantype<Lhs>::type::Index Index;
|
|
|
|
// make sure to call innerSize/outerSize since we fake the storage order.
|
|
Index rows = lhs.innerSize();
|
|
Index cols = rhs.outerSize();
|
|
//int size = lhs.outerSize();
|
|
ei_assert(lhs.outerSize() == rhs.innerSize());
|
|
|
|
// allocate a temporary buffer
|
|
AmbiVector<Scalar,Index> tempVector(rows);
|
|
|
|
// estimate the number of non zero entries
|
|
float ratioLhs = float(lhs.nonZeros())/(float(lhs.rows())*float(lhs.cols()));
|
|
float avgNnzPerRhsColumn = float(rhs.nonZeros())/float(cols);
|
|
float ratioRes = std::min(ratioLhs * avgNnzPerRhsColumn, 1.f);
|
|
|
|
res.resize(rows, cols);
|
|
res.reserve(Index(ratioRes*rows*cols));
|
|
for (Index j=0; j<cols; ++j)
|
|
{
|
|
// let's do a more accurate determination of the nnz ratio for the current column j of res
|
|
//float ratioColRes = std::min(ratioLhs * rhs.innerNonZeros(j), 1.f);
|
|
// FIXME find a nice way to get the number of nonzeros of a sub matrix (here an inner vector)
|
|
float ratioColRes = ratioRes;
|
|
tempVector.init(ratioColRes);
|
|
tempVector.setZero();
|
|
for (typename Rhs::InnerIterator rhsIt(rhs, j); rhsIt; ++rhsIt)
|
|
{
|
|
// FIXME should be written like this: tmp += rhsIt.value() * lhs.col(rhsIt.index())
|
|
tempVector.restart();
|
|
Scalar x = rhsIt.value();
|
|
for (typename Lhs::InnerIterator lhsIt(lhs, rhsIt.index()); lhsIt; ++lhsIt)
|
|
{
|
|
tempVector.coeffRef(lhsIt.index()) += lhsIt.value() * x;
|
|
}
|
|
}
|
|
res.startVec(j);
|
|
for (typename AmbiVector<Scalar,Index>::Iterator it(tempVector); it; ++it)
|
|
res.insertBackByOuterInner(j,it.index()) = it.value();
|
|
}
|
|
res.finalize();
|
|
}
|
|
|
|
template<typename Lhs, typename Rhs, typename ResultType,
|
|
int LhsStorageOrder = ei_traits<Lhs>::Flags&RowMajorBit,
|
|
int RhsStorageOrder = ei_traits<Rhs>::Flags&RowMajorBit,
|
|
int ResStorageOrder = ei_traits<ResultType>::Flags&RowMajorBit>
|
|
struct ei_sparse_product_selector;
|
|
|
|
template<typename Lhs, typename Rhs, typename ResultType>
|
|
struct ei_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,ColMajor>
|
|
{
|
|
typedef typename ei_traits<typename ei_cleantype<Lhs>::type>::Scalar Scalar;
|
|
|
|
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
{
|
|
// std::cerr << __LINE__ << "\n";
|
|
typename ei_cleantype<ResultType>::type _res(res.rows(), res.cols());
|
|
ei_sparse_product_impl<Lhs,Rhs,ResultType>(lhs, rhs, _res);
|
|
res.swap(_res);
|
|
}
|
|
};
|
|
|
|
template<typename Lhs, typename Rhs, typename ResultType>
|
|
struct ei_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,RowMajor>
|
|
{
|
|
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
{
|
|
// std::cerr << __LINE__ << "\n";
|
|
// we need a col-major matrix to hold the result
|
|
typedef SparseMatrix<typename ResultType::Scalar> SparseTemporaryType;
|
|
SparseTemporaryType _res(res.rows(), res.cols());
|
|
ei_sparse_product_impl<Lhs,Rhs,SparseTemporaryType>(lhs, rhs, _res);
|
|
res = _res;
|
|
}
|
|
};
|
|
|
|
template<typename Lhs, typename Rhs, typename ResultType>
|
|
struct ei_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,RowMajor>
|
|
{
|
|
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
{
|
|
// std::cerr << __LINE__ << "\n";
|
|
// let's transpose the product to get a column x column product
|
|
typename ei_cleantype<ResultType>::type _res(res.rows(), res.cols());
|
|
ei_sparse_product_impl<Rhs,Lhs,ResultType>(rhs, lhs, _res);
|
|
res.swap(_res);
|
|
}
|
|
};
|
|
|
|
template<typename Lhs, typename Rhs, typename ResultType>
|
|
struct ei_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,ColMajor>
|
|
{
|
|
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
{
|
|
// std::cerr << "here...\n";
|
|
typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
|
|
ColMajorMatrix colLhs(lhs);
|
|
ColMajorMatrix colRhs(rhs);
|
|
// std::cerr << "more...\n";
|
|
ei_sparse_product_impl<ColMajorMatrix,ColMajorMatrix,ResultType>(colLhs, colRhs, res);
|
|
// std::cerr << "OK.\n";
|
|
|
|
// let's transpose the product to get a column x column product
|
|
|
|
// typedef SparseMatrix<typename ResultType::Scalar> SparseTemporaryType;
|
|
// SparseTemporaryType _res(res.cols(), res.rows());
|
|
// ei_sparse_product_impl<Rhs,Lhs,SparseTemporaryType>(rhs, lhs, _res);
|
|
// res = _res.transpose();
|
|
}
|
|
};
|
|
|
|
// NOTE the 2 others cases (col row *) must never occurs since they are caught
|
|
// by ProductReturnType which transform it to (col col *) by evaluating rhs.
|
|
|
|
|
|
// sparse = sparse * sparse
|
|
template<typename Derived>
|
|
template<typename Lhs, typename Rhs>
|
|
inline Derived& SparseMatrixBase<Derived>::operator=(const SparseSparseProduct<Lhs,Rhs>& product)
|
|
{
|
|
// std::cerr << "there..." << typeid(Lhs).name() << " " << typeid(Lhs).name() << " " << (Derived::Flags&&RowMajorBit) << "\n";
|
|
ei_sparse_product_selector<
|
|
typename ei_cleantype<Lhs>::type,
|
|
typename ei_cleantype<Rhs>::type,
|
|
Derived>::run(product.lhs(),product.rhs(),derived());
|
|
return derived();
|
|
}
|
|
|
|
|
|
template<typename Lhs, typename Rhs, typename ResultType,
|
|
int LhsStorageOrder = ei_traits<Lhs>::Flags&RowMajorBit,
|
|
int RhsStorageOrder = ei_traits<Rhs>::Flags&RowMajorBit,
|
|
int ResStorageOrder = ei_traits<ResultType>::Flags&RowMajorBit>
|
|
struct ei_sparse_product_selector2;
|
|
|
|
template<typename Lhs, typename Rhs, typename ResultType>
|
|
struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,ColMajor,ColMajor,ColMajor>
|
|
{
|
|
typedef typename ei_traits<typename ei_cleantype<Lhs>::type>::Scalar Scalar;
|
|
|
|
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
{
|
|
ei_sparse_product_impl2<Lhs,Rhs,ResultType>(lhs, rhs, res);
|
|
}
|
|
};
|
|
|
|
template<typename Lhs, typename Rhs, typename ResultType>
|
|
struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,RowMajor,ColMajor,ColMajor>
|
|
{
|
|
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
{
|
|
// prevent warnings until the code is fixed
|
|
EIGEN_UNUSED_VARIABLE(lhs);
|
|
EIGEN_UNUSED_VARIABLE(rhs);
|
|
EIGEN_UNUSED_VARIABLE(res);
|
|
|
|
// typedef SparseMatrix<typename ResultType::Scalar,RowMajor> RowMajorMatrix;
|
|
// RowMajorMatrix rhsRow = rhs;
|
|
// RowMajorMatrix resRow(res.rows(), res.cols());
|
|
// ei_sparse_product_impl2<RowMajorMatrix,Lhs,RowMajorMatrix>(rhsRow, lhs, resRow);
|
|
// res = resRow;
|
|
}
|
|
};
|
|
|
|
template<typename Lhs, typename Rhs, typename ResultType>
|
|
struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,ColMajor,RowMajor,ColMajor>
|
|
{
|
|
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
{
|
|
typedef SparseMatrix<typename ResultType::Scalar,RowMajor> RowMajorMatrix;
|
|
RowMajorMatrix lhsRow = lhs;
|
|
RowMajorMatrix resRow(res.rows(), res.cols());
|
|
ei_sparse_product_impl2<Rhs,RowMajorMatrix,RowMajorMatrix>(rhs, lhsRow, resRow);
|
|
res = resRow;
|
|
}
|
|
};
|
|
|
|
template<typename Lhs, typename Rhs, typename ResultType>
|
|
struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,RowMajor,RowMajor,ColMajor>
|
|
{
|
|
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
{
|
|
typedef SparseMatrix<typename ResultType::Scalar,RowMajor> RowMajorMatrix;
|
|
RowMajorMatrix resRow(res.rows(), res.cols());
|
|
ei_sparse_product_impl2<Rhs,Lhs,RowMajorMatrix>(rhs, lhs, resRow);
|
|
res = resRow;
|
|
}
|
|
};
|
|
|
|
|
|
template<typename Lhs, typename Rhs, typename ResultType>
|
|
struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,ColMajor,ColMajor,RowMajor>
|
|
{
|
|
typedef typename ei_traits<typename ei_cleantype<Lhs>::type>::Scalar Scalar;
|
|
|
|
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
{
|
|
typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
|
|
ColMajorMatrix resCol(res.rows(), res.cols());
|
|
ei_sparse_product_impl2<Lhs,Rhs,ColMajorMatrix>(lhs, rhs, resCol);
|
|
res = resCol;
|
|
}
|
|
};
|
|
|
|
template<typename Lhs, typename Rhs, typename ResultType>
|
|
struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,RowMajor,ColMajor,RowMajor>
|
|
{
|
|
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
{
|
|
typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
|
|
ColMajorMatrix lhsCol = lhs;
|
|
ColMajorMatrix resCol(res.rows(), res.cols());
|
|
ei_sparse_product_impl2<ColMajorMatrix,Rhs,ColMajorMatrix>(lhsCol, rhs, resCol);
|
|
res = resCol;
|
|
}
|
|
};
|
|
|
|
template<typename Lhs, typename Rhs, typename ResultType>
|
|
struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,ColMajor,RowMajor,RowMajor>
|
|
{
|
|
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
{
|
|
typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
|
|
ColMajorMatrix rhsCol = rhs;
|
|
ColMajorMatrix resCol(res.rows(), res.cols());
|
|
ei_sparse_product_impl2<Lhs,ColMajorMatrix,ColMajorMatrix>(lhs, rhsCol, resCol);
|
|
res = resCol;
|
|
}
|
|
};
|
|
|
|
template<typename Lhs, typename Rhs, typename ResultType>
|
|
struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,RowMajor,RowMajor,RowMajor>
|
|
{
|
|
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
{
|
|
typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
|
|
// ColMajorMatrix lhsTr(lhs);
|
|
// ColMajorMatrix rhsTr(rhs);
|
|
// ColMajorMatrix aux(res.rows(), res.cols());
|
|
// ei_sparse_product_impl2<Rhs,Lhs,ColMajorMatrix>(rhs, lhs, aux);
|
|
// // ColMajorMatrix aux2 = aux.transpose();
|
|
// res = aux;
|
|
typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
|
|
ColMajorMatrix lhsCol(lhs);
|
|
ColMajorMatrix rhsCol(rhs);
|
|
ColMajorMatrix resCol(res.rows(), res.cols());
|
|
ei_sparse_product_impl2<ColMajorMatrix,ColMajorMatrix,ColMajorMatrix>(lhsCol, rhsCol, resCol);
|
|
res = resCol;
|
|
}
|
|
};
|
|
|
|
template<typename Derived>
|
|
template<typename Lhs, typename Rhs>
|
|
inline void SparseMatrixBase<Derived>::_experimentalNewProduct(const Lhs& lhs, const Rhs& rhs)
|
|
{
|
|
//derived().resize(lhs.rows(), rhs.cols());
|
|
ei_sparse_product_selector2<
|
|
typename ei_cleantype<Lhs>::type,
|
|
typename ei_cleantype<Rhs>::type,
|
|
Derived>::run(lhs,rhs,derived());
|
|
}
|
|
|
|
// sparse * sparse
|
|
template<typename Derived>
|
|
template<typename OtherDerived>
|
|
inline const typename SparseSparseProductReturnType<Derived,OtherDerived>::Type
|
|
SparseMatrixBase<Derived>::operator*(const SparseMatrixBase<OtherDerived> &other) const
|
|
{
|
|
return typename SparseSparseProductReturnType<Derived,OtherDerived>::Type(derived(), other.derived());
|
|
}
|
|
|
|
#endif // EIGEN_SPARSESPARSEPRODUCT_H
|