eigen/Eigen/src/Sparse/SparseSparseProduct.h

391 lines
14 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_SPARSESPARSEPRODUCT_H
#define EIGEN_SPARSESPARSEPRODUCT_H
template<typename Lhs, typename Rhs, typename ResultType>
static void ei_sparse_product_impl2(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
typedef typename ei_cleantype<Lhs>::type::Scalar Scalar;
typedef typename ei_cleantype<Lhs>::type::Index Index;
// make sure to call innerSize/outerSize since we fake the storage order.
Index rows = lhs.innerSize();
Index cols = rhs.outerSize();
ei_assert(lhs.outerSize() == rhs.innerSize());
std::vector<bool> mask(rows,false);
Matrix<Scalar,Dynamic,1> values(rows);
Matrix<Index,Dynamic,1> indices(rows);
// estimate the number of non zero entries
float ratioLhs = float(lhs.nonZeros())/(float(lhs.rows())*float(lhs.cols()));
float avgNnzPerRhsColumn = float(rhs.nonZeros())/float(cols);
float ratioRes = std::min(ratioLhs * avgNnzPerRhsColumn, 1.f);
// int t200 = rows/(log2(200)*1.39);
// int t = (rows*100)/139;
res.resize(rows, cols);
res.reserve(Index(ratioRes*rows*cols));
// we compute each column of the result, one after the other
for (Index j=0; j<cols; ++j)
{
res.startVec(j);
Index nnz = 0;
for (typename Rhs::InnerIterator rhsIt(rhs, j); rhsIt; ++rhsIt)
{
Scalar y = rhsIt.value();
Index k = rhsIt.index();
for (typename Lhs::InnerIterator lhsIt(lhs, k); lhsIt; ++lhsIt)
{
Index i = lhsIt.index();
Scalar x = lhsIt.value();
if(!mask[i])
{
mask[i] = true;
// values[i] = x * y;
// indices[nnz] = i;
++nnz;
}
else
values[i] += x * y;
}
}
// FIXME reserve nnz non zeros
// FIXME implement fast sort algorithms for very small nnz
// if the result is sparse enough => use a quick sort
// otherwise => loop through the entire vector
// In order to avoid to perform an expensive log2 when the
// result is clearly very sparse we use a linear bound up to 200.
// if((nnz<200 && nnz<t200) || nnz * log2(nnz) < t)
// {
// if(nnz>1) std::sort(indices.data(),indices.data()+nnz);
// for(int k=0; k<nnz; ++k)
// {
// int i = indices[k];
// res.insertBackNoCheck(j,i) = values[i];
// mask[i] = false;
// }
// }
// else
// {
// // dense path
// for(int i=0; i<rows; ++i)
// {
// if(mask[i])
// {
// mask[i] = false;
// res.insertBackNoCheck(j,i) = values[i];
// }
// }
// }
}
res.finalize();
}
// perform a pseudo in-place sparse * sparse product assuming all matrices are col major
template<typename Lhs, typename Rhs, typename ResultType>
static void ei_sparse_product_impl(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
// return ei_sparse_product_impl2(lhs,rhs,res);
typedef typename ei_cleantype<Lhs>::type::Scalar Scalar;
typedef typename ei_cleantype<Lhs>::type::Index Index;
// make sure to call innerSize/outerSize since we fake the storage order.
Index rows = lhs.innerSize();
Index cols = rhs.outerSize();
//int size = lhs.outerSize();
ei_assert(lhs.outerSize() == rhs.innerSize());
// allocate a temporary buffer
AmbiVector<Scalar,Index> tempVector(rows);
// estimate the number of non zero entries
float ratioLhs = float(lhs.nonZeros())/(float(lhs.rows())*float(lhs.cols()));
float avgNnzPerRhsColumn = float(rhs.nonZeros())/float(cols);
float ratioRes = std::min(ratioLhs * avgNnzPerRhsColumn, 1.f);
res.resize(rows, cols);
res.reserve(Index(ratioRes*rows*cols));
for (Index j=0; j<cols; ++j)
{
// let's do a more accurate determination of the nnz ratio for the current column j of res
//float ratioColRes = std::min(ratioLhs * rhs.innerNonZeros(j), 1.f);
// FIXME find a nice way to get the number of nonzeros of a sub matrix (here an inner vector)
float ratioColRes = ratioRes;
tempVector.init(ratioColRes);
tempVector.setZero();
for (typename Rhs::InnerIterator rhsIt(rhs, j); rhsIt; ++rhsIt)
{
// FIXME should be written like this: tmp += rhsIt.value() * lhs.col(rhsIt.index())
tempVector.restart();
Scalar x = rhsIt.value();
for (typename Lhs::InnerIterator lhsIt(lhs, rhsIt.index()); lhsIt; ++lhsIt)
{
tempVector.coeffRef(lhsIt.index()) += lhsIt.value() * x;
}
}
res.startVec(j);
for (typename AmbiVector<Scalar,Index>::Iterator it(tempVector); it; ++it)
res.insertBackByOuterInner(j,it.index()) = it.value();
}
res.finalize();
}
template<typename Lhs, typename Rhs, typename ResultType,
int LhsStorageOrder = ei_traits<Lhs>::Flags&RowMajorBit,
int RhsStorageOrder = ei_traits<Rhs>::Flags&RowMajorBit,
int ResStorageOrder = ei_traits<ResultType>::Flags&RowMajorBit>
struct ei_sparse_product_selector;
template<typename Lhs, typename Rhs, typename ResultType>
struct ei_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,ColMajor>
{
typedef typename ei_traits<typename ei_cleantype<Lhs>::type>::Scalar Scalar;
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
// std::cerr << __LINE__ << "\n";
typename ei_cleantype<ResultType>::type _res(res.rows(), res.cols());
ei_sparse_product_impl<Lhs,Rhs,ResultType>(lhs, rhs, _res);
res.swap(_res);
}
};
template<typename Lhs, typename Rhs, typename ResultType>
struct ei_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,RowMajor>
{
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
// std::cerr << __LINE__ << "\n";
// we need a col-major matrix to hold the result
typedef SparseMatrix<typename ResultType::Scalar> SparseTemporaryType;
SparseTemporaryType _res(res.rows(), res.cols());
ei_sparse_product_impl<Lhs,Rhs,SparseTemporaryType>(lhs, rhs, _res);
res = _res;
}
};
template<typename Lhs, typename Rhs, typename ResultType>
struct ei_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,RowMajor>
{
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
// std::cerr << __LINE__ << "\n";
// let's transpose the product to get a column x column product
typename ei_cleantype<ResultType>::type _res(res.rows(), res.cols());
ei_sparse_product_impl<Rhs,Lhs,ResultType>(rhs, lhs, _res);
res.swap(_res);
}
};
template<typename Lhs, typename Rhs, typename ResultType>
struct ei_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,ColMajor>
{
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
// std::cerr << "here...\n";
typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
ColMajorMatrix colLhs(lhs);
ColMajorMatrix colRhs(rhs);
// std::cerr << "more...\n";
ei_sparse_product_impl<ColMajorMatrix,ColMajorMatrix,ResultType>(colLhs, colRhs, res);
// std::cerr << "OK.\n";
// let's transpose the product to get a column x column product
// typedef SparseMatrix<typename ResultType::Scalar> SparseTemporaryType;
// SparseTemporaryType _res(res.cols(), res.rows());
// ei_sparse_product_impl<Rhs,Lhs,SparseTemporaryType>(rhs, lhs, _res);
// res = _res.transpose();
}
};
// NOTE the 2 others cases (col row *) must never occurs since they are caught
// by ProductReturnType which transform it to (col col *) by evaluating rhs.
// sparse = sparse * sparse
template<typename Derived>
template<typename Lhs, typename Rhs>
inline Derived& SparseMatrixBase<Derived>::operator=(const SparseSparseProduct<Lhs,Rhs>& product)
{
// std::cerr << "there..." << typeid(Lhs).name() << " " << typeid(Lhs).name() << " " << (Derived::Flags&&RowMajorBit) << "\n";
ei_sparse_product_selector<
typename ei_cleantype<Lhs>::type,
typename ei_cleantype<Rhs>::type,
Derived>::run(product.lhs(),product.rhs(),derived());
return derived();
}
template<typename Lhs, typename Rhs, typename ResultType,
int LhsStorageOrder = ei_traits<Lhs>::Flags&RowMajorBit,
int RhsStorageOrder = ei_traits<Rhs>::Flags&RowMajorBit,
int ResStorageOrder = ei_traits<ResultType>::Flags&RowMajorBit>
struct ei_sparse_product_selector2;
template<typename Lhs, typename Rhs, typename ResultType>
struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,ColMajor,ColMajor,ColMajor>
{
typedef typename ei_traits<typename ei_cleantype<Lhs>::type>::Scalar Scalar;
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
ei_sparse_product_impl2<Lhs,Rhs,ResultType>(lhs, rhs, res);
}
};
template<typename Lhs, typename Rhs, typename ResultType>
struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,RowMajor,ColMajor,ColMajor>
{
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
// prevent warnings until the code is fixed
EIGEN_UNUSED_VARIABLE(lhs);
EIGEN_UNUSED_VARIABLE(rhs);
EIGEN_UNUSED_VARIABLE(res);
// typedef SparseMatrix<typename ResultType::Scalar,RowMajor> RowMajorMatrix;
// RowMajorMatrix rhsRow = rhs;
// RowMajorMatrix resRow(res.rows(), res.cols());
// ei_sparse_product_impl2<RowMajorMatrix,Lhs,RowMajorMatrix>(rhsRow, lhs, resRow);
// res = resRow;
}
};
template<typename Lhs, typename Rhs, typename ResultType>
struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,ColMajor,RowMajor,ColMajor>
{
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
typedef SparseMatrix<typename ResultType::Scalar,RowMajor> RowMajorMatrix;
RowMajorMatrix lhsRow = lhs;
RowMajorMatrix resRow(res.rows(), res.cols());
ei_sparse_product_impl2<Rhs,RowMajorMatrix,RowMajorMatrix>(rhs, lhsRow, resRow);
res = resRow;
}
};
template<typename Lhs, typename Rhs, typename ResultType>
struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,RowMajor,RowMajor,ColMajor>
{
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
typedef SparseMatrix<typename ResultType::Scalar,RowMajor> RowMajorMatrix;
RowMajorMatrix resRow(res.rows(), res.cols());
ei_sparse_product_impl2<Rhs,Lhs,RowMajorMatrix>(rhs, lhs, resRow);
res = resRow;
}
};
template<typename Lhs, typename Rhs, typename ResultType>
struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,ColMajor,ColMajor,RowMajor>
{
typedef typename ei_traits<typename ei_cleantype<Lhs>::type>::Scalar Scalar;
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
ColMajorMatrix resCol(res.rows(), res.cols());
ei_sparse_product_impl2<Lhs,Rhs,ColMajorMatrix>(lhs, rhs, resCol);
res = resCol;
}
};
template<typename Lhs, typename Rhs, typename ResultType>
struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,RowMajor,ColMajor,RowMajor>
{
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
ColMajorMatrix lhsCol = lhs;
ColMajorMatrix resCol(res.rows(), res.cols());
ei_sparse_product_impl2<ColMajorMatrix,Rhs,ColMajorMatrix>(lhsCol, rhs, resCol);
res = resCol;
}
};
template<typename Lhs, typename Rhs, typename ResultType>
struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,ColMajor,RowMajor,RowMajor>
{
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
ColMajorMatrix rhsCol = rhs;
ColMajorMatrix resCol(res.rows(), res.cols());
ei_sparse_product_impl2<Lhs,ColMajorMatrix,ColMajorMatrix>(lhs, rhsCol, resCol);
res = resCol;
}
};
template<typename Lhs, typename Rhs, typename ResultType>
struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,RowMajor,RowMajor,RowMajor>
{
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
// ColMajorMatrix lhsTr(lhs);
// ColMajorMatrix rhsTr(rhs);
// ColMajorMatrix aux(res.rows(), res.cols());
// ei_sparse_product_impl2<Rhs,Lhs,ColMajorMatrix>(rhs, lhs, aux);
// // ColMajorMatrix aux2 = aux.transpose();
// res = aux;
typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
ColMajorMatrix lhsCol(lhs);
ColMajorMatrix rhsCol(rhs);
ColMajorMatrix resCol(res.rows(), res.cols());
ei_sparse_product_impl2<ColMajorMatrix,ColMajorMatrix,ColMajorMatrix>(lhsCol, rhsCol, resCol);
res = resCol;
}
};
template<typename Derived>
template<typename Lhs, typename Rhs>
inline void SparseMatrixBase<Derived>::_experimentalNewProduct(const Lhs& lhs, const Rhs& rhs)
{
//derived().resize(lhs.rows(), rhs.cols());
ei_sparse_product_selector2<
typename ei_cleantype<Lhs>::type,
typename ei_cleantype<Rhs>::type,
Derived>::run(lhs,rhs,derived());
}
// sparse * sparse
template<typename Derived>
template<typename OtherDerived>
inline const typename SparseSparseProductReturnType<Derived,OtherDerived>::Type
SparseMatrixBase<Derived>::operator*(const SparseMatrixBase<OtherDerived> &other) const
{
return typename SparseSparseProductReturnType<Derived,OtherDerived>::Type(derived(), other.derived());
}
#endif // EIGEN_SPARSESPARSEPRODUCT_H