eigen/Eigen/src/Sparse/MappedSparseMatrix.h
Gael Guennebaud 96e1e582ff Sparse module:
* add a MappedSparseMatrix class (like Eigen::Map but for sparse
  matrices)
* rename SparseArray to CompressedStorage
2009-01-15 12:52:59 +00:00

169 lines
6.0 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_MAPPED_SPARSEMATRIX_H
#define EIGEN_MAPPED_SPARSEMATRIX_H
/** \class MappedSparseMatrix
*
* \brief Sparse matrix
*
* \param _Scalar the scalar type, i.e. the type of the coefficients
*
* See http://www.netlib.org/linalg/html_templates/node91.html for details on the storage scheme.
*
*/
template<typename _Scalar, int _Flags>
struct ei_traits<MappedSparseMatrix<_Scalar, _Flags> > : ei_traits<SparseMatrix<_Scalar, _Flags> >
{};
template<typename _Scalar, int _Flags>
class MappedSparseMatrix
: public SparseMatrixBase<MappedSparseMatrix<_Scalar, _Flags> >
{
public:
EIGEN_SPARSE_GENERIC_PUBLIC_INTERFACE(MappedSparseMatrix)
protected:
enum { IsRowMajor = Base::IsRowMajor };
int m_outerSize;
int m_innerSize;
int m_nnz;
int* m_outerIndex;
int* m_innerIndices;
Scalar* m_values;
public:
inline int rows() const { return IsRowMajor ? m_outerSize : m_innerSize; }
inline int cols() const { return IsRowMajor ? m_innerSize : m_outerSize; }
inline int innerSize() const { return m_innerSize; }
inline int outerSize() const { return m_outerSize; }
inline int innerNonZeros(int j) const { return m_outerIndex[j+1]-m_outerIndex[j]; }
//----------------------------------------
// direct access interface
inline const Scalar* _valuePtr() const { return &m_values; }
inline Scalar* _valuePtr() { return &m_values; }
inline const int* _innerIndexPtr() const { return &m_innerIndices; }
inline int* _innerIndexPtr() { return m_innerIndices; }
inline const int* _outerIndexPtr() const { return m_outerIndex; }
inline int* _outerIndexPtr() { return m_outerIndex; }
//----------------------------------------
inline Scalar coeff(int row, int col) const
{
const int outer = RowMajor ? row : col;
const int inner = RowMajor ? col : row;
int start = m_outerIndex[outer];
int end = m_outerIndex[outer+1];
if (start==end)
return Scalar(0);
else if (end>0 && inner==m_innerIndices[end-1])
return m_values[end-1];
// ^^ optimization: let's first check if it is the last coefficient
// (very common in high level algorithms)
const int* r = std::lower_bound(&m_innerIndices[start],&m_innerIndices[end-1],inner);
const int id = r-&m_innerIndices[0];
return ((*r==inner) && (id<end)) ? m_values[id] : Scalar(0);
}
inline Scalar& coeffRef(int row, int col)
{
const int outer = RowMajor ? row : col;
const int inner = RowMajor ? col : row;
int start = m_outerIndex[outer];
int end = m_outerIndex[outer+1];
ei_assert(end>=start && "you probably called coeffRef on a non finalized matrix");
ei_assert(end>start && "coeffRef cannot be called on a zero coefficient");
int* r = std::lower_bound(&m_innerIndices[start],&m_innerIndices[end],inner);
const int id = r-&m_innerIndices[0];
ei_assert((*r==inner) && (id<end) && "coeffRef cannot be called on a zero coefficient");
return m_values[id];
}
class InnerIterator;
/** \returns the number of non zero coefficients */
inline int nonZeros() const { return m_nnz; }
inline MappedSparseMatrix(int rows, int cols, int nnz, int* outerIndexPtr, int* innerIndexPtr, Scalar* valuePtr)
: m_outerSize(IsRowMajor?rows:cols), m_innerSize(IsRowMajor?cols:rows), m_nnz(nnz), m_outerIndex(outerIndexPtr),
m_innerIndices(innerIndexPtr), m_values(valuePtr)
{}
#ifdef EIGEN_TAUCS_SUPPORT
explicit MappedSparseMatrix(taucs_ccs_matrix& taucsMatrix);
#endif
#ifdef EIGEN_CHOLMOD_SUPPORT
explicit MappedSparseMatrix(cholmod_sparse& cholmodMatrix);
#endif
#ifdef EIGEN_SUPERLU_SUPPORT
explicit MappedSparseMatrix(SluMatrix& sluMatrix);
#endif
/** Empty destructor */
inline ~MappedSparseMatrix() {}
};
template<typename Scalar, int _Flags>
class MappedSparseMatrix<Scalar,_Flags>::InnerIterator
{
public:
InnerIterator(const MappedSparseMatrix& mat, int outer)
: m_matrix(mat), m_id(mat._outerIndexPtr[outer]), m_start(m_id), m_end(mat._outerIndexPtr[outer+1])
{}
template<unsigned int Added, unsigned int Removed>
InnerIterator(const Flagged<MappedSparseMatrix,Added,Removed>& mat, int outer)
: m_matrix(mat._expression()), m_id(m_matrix._outerIndexPtr[outer]),
m_start(m_id), m_end(m_matrix._outerIndexPtr[outer+1])
{}
inline InnerIterator& operator++() { m_id++; return *this; }
inline Scalar value() const { return m_matrix.m_valuePtr[m_id]; }
inline Scalar& valueRef() { return const_cast<Scalar&>(m_matrix._valuePtr[m_id]); }
inline int index() const { return m_matrix._innerIndexPtr(m_id); }
inline operator bool() const { return (m_id < m_end) && (m_id>=m_start); }
protected:
const MappedSparseMatrix& m_matrix;
int m_id;
const int m_start;
const int m_end;
};
#endif // EIGEN_MAPPED_SPARSEMATRIX_H