mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-05-01 00:04:14 +08:00
220 lines
6.6 KiB
C++
220 lines
6.6 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_BICGSTAB_H
|
|
#define EIGEN_BICGSTAB_H
|
|
|
|
namespace Eigen {
|
|
|
|
namespace internal {
|
|
|
|
/** \internal Low-level bi conjugate gradient stabilized algorithm
|
|
* \param mat The matrix A
|
|
* \param rhs The right hand side vector b
|
|
* \param x On input and initial solution, on output the computed solution.
|
|
* \param precond A preconditioner being able to efficiently solve for an
|
|
* approximation of Ax=b (regardless of b)
|
|
* \param iters On input the max number of iteration, on output the number of performed iterations.
|
|
* \param tol_error On input the tolerance error, on output an estimation of the relative error.
|
|
* \return false in the case of numerical issue, for example a break down of BiCGSTAB.
|
|
*/
|
|
template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
|
|
bool bicgstab(const MatrixType& mat, const Rhs& rhs, Dest& x,
|
|
const Preconditioner& precond, Index& iters,
|
|
typename Dest::RealScalar& tol_error)
|
|
{
|
|
using std::sqrt;
|
|
using std::abs;
|
|
typedef typename Dest::RealScalar RealScalar;
|
|
typedef typename Dest::Scalar Scalar;
|
|
typedef Matrix<Scalar,Dynamic,1> VectorType;
|
|
RealScalar tol = tol_error;
|
|
Index maxIters = iters;
|
|
|
|
Index n = mat.cols();
|
|
VectorType r = rhs - mat * x;
|
|
VectorType r0 = r;
|
|
|
|
RealScalar r0_sqnorm = r0.squaredNorm();
|
|
RealScalar rhs_sqnorm = rhs.squaredNorm();
|
|
if(rhs_sqnorm == 0)
|
|
{
|
|
x.setZero();
|
|
return true;
|
|
}
|
|
Scalar rho = 1;
|
|
Scalar alpha = 1;
|
|
Scalar w = 1;
|
|
|
|
VectorType v = VectorType::Zero(n), p = VectorType::Zero(n);
|
|
VectorType y(n), z(n);
|
|
VectorType kt(n), ks(n);
|
|
|
|
VectorType s(n), t(n);
|
|
|
|
RealScalar tol2 = tol*tol*rhs_sqnorm;
|
|
RealScalar eps2 = NumTraits<Scalar>::epsilon()*NumTraits<Scalar>::epsilon();
|
|
Index i = 0;
|
|
Index restarts = 0;
|
|
|
|
while ( r.squaredNorm() > tol2 && i<maxIters )
|
|
{
|
|
Scalar rho_old = rho;
|
|
|
|
rho = r0.dot(r);
|
|
if (abs(rho) < eps2*r0_sqnorm)
|
|
{
|
|
// The new residual vector became too orthogonal to the arbitrarily chosen direction r0
|
|
// Let's restart with a new r0:
|
|
r = rhs - mat * x;
|
|
r0 = r;
|
|
rho = r0_sqnorm = r.squaredNorm();
|
|
if(restarts++ == 0)
|
|
i = 0;
|
|
}
|
|
Scalar beta = (rho/rho_old) * (alpha / w);
|
|
p = r + beta * (p - w * v);
|
|
|
|
y = precond.solve(p);
|
|
|
|
v.noalias() = mat * y;
|
|
|
|
alpha = rho / r0.dot(v);
|
|
s = r - alpha * v;
|
|
|
|
z = precond.solve(s);
|
|
t.noalias() = mat * z;
|
|
|
|
RealScalar tmp = t.squaredNorm();
|
|
if(tmp>RealScalar(0))
|
|
w = t.dot(s) / tmp;
|
|
else
|
|
w = Scalar(0);
|
|
x += alpha * y + w * z;
|
|
r = s - w * t;
|
|
++i;
|
|
}
|
|
tol_error = sqrt(r.squaredNorm()/rhs_sqnorm);
|
|
iters = i;
|
|
return true;
|
|
}
|
|
|
|
}
|
|
|
|
template< typename _MatrixType,
|
|
typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
|
|
class BiCGSTAB;
|
|
|
|
namespace internal {
|
|
|
|
template< typename _MatrixType, typename _Preconditioner>
|
|
struct traits<BiCGSTAB<_MatrixType,_Preconditioner> >
|
|
{
|
|
typedef _MatrixType MatrixType;
|
|
typedef _Preconditioner Preconditioner;
|
|
};
|
|
|
|
}
|
|
|
|
/** \ingroup IterativeLinearSolvers_Module
|
|
* \brief A bi conjugate gradient stabilized solver for sparse square problems
|
|
*
|
|
* This class allows to solve for A.x = b sparse linear problems using a bi conjugate gradient
|
|
* stabilized algorithm. The vectors x and b can be either dense or sparse.
|
|
*
|
|
* \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
|
|
* \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
|
|
*
|
|
* The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
|
|
* and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
|
|
* and NumTraits<Scalar>::epsilon() for the tolerance.
|
|
*
|
|
* The tolerance is the relative residual error: |Ax-b|/|b|
|
|
*
|
|
* This class can be used as the direct solver classes. Here is a typical usage example:
|
|
* \include BiCGSTAB_simple.cpp
|
|
*
|
|
* By default the iterations start with x=0 as an initial guess of the solution.
|
|
* One can control the start using the solveWithGuess() method.
|
|
*
|
|
* \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
|
|
*/
|
|
template< typename _MatrixType, typename _Preconditioner>
|
|
class BiCGSTAB : public IterativeSolverBase<BiCGSTAB<_MatrixType,_Preconditioner> >
|
|
{
|
|
typedef IterativeSolverBase<BiCGSTAB> Base;
|
|
using Base::mp_matrix;
|
|
using Base::m_error;
|
|
using Base::m_iterations;
|
|
using Base::m_info;
|
|
using Base::m_isInitialized;
|
|
public:
|
|
typedef _MatrixType MatrixType;
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename MatrixType::RealScalar RealScalar;
|
|
typedef _Preconditioner Preconditioner;
|
|
|
|
public:
|
|
|
|
/** Default constructor. */
|
|
BiCGSTAB() : Base() {}
|
|
|
|
/** Initialize the solver with matrix \a A for further \c Ax=b solving.
|
|
*
|
|
* This constructor is a shortcut for the default constructor followed
|
|
* by a call to compute().
|
|
*
|
|
* \warning this class stores a reference to the matrix A as well as some
|
|
* precomputed values that depend on it. Therefore, if \a A is changed
|
|
* this class becomes invalid. Call compute() to update it with the new
|
|
* matrix A, or modify a copy of A.
|
|
*/
|
|
explicit BiCGSTAB(const MatrixType& A) : Base(A) {}
|
|
|
|
~BiCGSTAB() {}
|
|
|
|
/** \internal */
|
|
template<typename Rhs,typename Dest>
|
|
void _solve_with_guess_impl(const Rhs& b, Dest& x) const
|
|
{
|
|
bool failed = false;
|
|
for(Index j=0; j<b.cols(); ++j)
|
|
{
|
|
m_iterations = Base::maxIterations();
|
|
m_error = Base::m_tolerance;
|
|
|
|
typename Dest::ColXpr xj(x,j);
|
|
if(!internal::bicgstab(mp_matrix, b.col(j), xj, Base::m_preconditioner, m_iterations, m_error))
|
|
failed = true;
|
|
}
|
|
m_info = failed ? NumericalIssue
|
|
: m_error <= Base::m_tolerance ? Success
|
|
: NoConvergence;
|
|
m_isInitialized = true;
|
|
}
|
|
|
|
/** \internal */
|
|
using Base::_solve_impl;
|
|
template<typename Rhs,typename Dest>
|
|
void _solve_impl(const MatrixBase<Rhs>& b, Dest& x) const
|
|
{
|
|
x.resize(this->rows(),b.cols());
|
|
x.setZero();
|
|
_solve_with_guess_impl(b,x);
|
|
}
|
|
|
|
protected:
|
|
|
|
};
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_BICGSTAB_H
|