mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-10-11 23:51:50 +08:00
196 lines
6.8 KiB
C++
196 lines
6.8 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_CXX11_TENSOR_TENSOR_STRIDING_H
|
|
#define EIGEN_CXX11_TENSOR_TENSOR_STRIDING_H
|
|
|
|
namespace Eigen {
|
|
|
|
/** \class TensorStriding
|
|
* \ingroup CXX11_Tensor_Module
|
|
*
|
|
* \brief Tensor striding class.
|
|
*
|
|
*
|
|
*/
|
|
namespace internal {
|
|
template<typename Strides, typename XprType>
|
|
struct traits<TensorStridingOp<Strides, XprType> > : public traits<XprType>
|
|
{
|
|
typedef typename XprType::Scalar Scalar;
|
|
typedef typename internal::packet_traits<Scalar>::type Packet;
|
|
typedef typename traits<XprType>::StorageKind StorageKind;
|
|
typedef typename traits<XprType>::Index Index;
|
|
typedef typename XprType::Nested Nested;
|
|
typedef typename remove_reference<Nested>::type _Nested;
|
|
};
|
|
|
|
template<typename Strides, typename XprType>
|
|
struct eval<TensorStridingOp<Strides, XprType>, Eigen::Dense>
|
|
{
|
|
typedef const TensorStridingOp<Strides, XprType>& type;
|
|
};
|
|
|
|
template<typename Strides, typename XprType>
|
|
struct nested<TensorStridingOp<Strides, XprType>, 1, typename eval<TensorStridingOp<Strides, XprType> >::type>
|
|
{
|
|
typedef TensorStridingOp<Strides, XprType> type;
|
|
};
|
|
|
|
} // end namespace internal
|
|
|
|
|
|
|
|
template<typename Strides, typename XprType>
|
|
class TensorStridingOp : public TensorBase<TensorStridingOp<Strides, XprType> >
|
|
{
|
|
public:
|
|
typedef typename Eigen::internal::traits<TensorStridingOp>::Scalar Scalar;
|
|
typedef typename Eigen::internal::traits<TensorStridingOp>::Packet Packet;
|
|
typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
|
|
typedef typename XprType::CoeffReturnType CoeffReturnType;
|
|
typedef typename XprType::PacketReturnType PacketReturnType;
|
|
typedef typename Eigen::internal::nested<TensorStridingOp>::type Nested;
|
|
typedef typename Eigen::internal::traits<TensorStridingOp>::StorageKind StorageKind;
|
|
typedef typename Eigen::internal::traits<TensorStridingOp>::Index Index;
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorStridingOp(const XprType& expr, const Strides& dims)
|
|
: m_xpr(expr), m_dims(dims) {}
|
|
|
|
EIGEN_DEVICE_FUNC
|
|
const Strides& strides() const { return m_dims; }
|
|
|
|
EIGEN_DEVICE_FUNC
|
|
const typename internal::remove_all<typename XprType::Nested>::type&
|
|
expression() const { return m_xpr; }
|
|
|
|
template<typename OtherDerived>
|
|
EIGEN_DEVICE_FUNC
|
|
EIGEN_STRONG_INLINE TensorStridingOp& operator = (const OtherDerived& other)
|
|
{
|
|
typedef TensorAssignOp<TensorStridingOp, const OtherDerived> Assign;
|
|
Assign assign(*this, other);
|
|
internal::TensorExecutor<const Assign, DefaultDevice, false>::run(assign, DefaultDevice());
|
|
return *this;
|
|
}
|
|
|
|
protected:
|
|
typename XprType::Nested m_xpr;
|
|
const Strides m_dims;
|
|
};
|
|
|
|
|
|
// Eval as rvalue
|
|
template<typename Strides, typename ArgType, typename Device>
|
|
struct TensorEvaluator<const TensorStridingOp<Strides, ArgType>, Device>
|
|
{
|
|
typedef TensorStridingOp<Strides, ArgType> XprType;
|
|
typedef typename XprType::Index Index;
|
|
static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
|
|
typedef DSizes<Index, NumDims> Dimensions;
|
|
|
|
enum {
|
|
IsAligned = /*TensorEvaluator<ArgType, Device>::IsAligned*/false,
|
|
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
|
|
};
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
|
|
: m_impl(op.expression(), device)
|
|
{
|
|
m_dimensions = m_impl.dimensions();
|
|
for (int i = 0; i < NumDims; ++i) {
|
|
m_dimensions[i] = ceilf(static_cast<float>(m_dimensions[i]) / op.strides()[i]);
|
|
}
|
|
|
|
const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
|
|
m_outputStrides[0] = 1;
|
|
m_inputStrides[0] = 1;
|
|
for (int i = 1; i < NumDims; ++i) {
|
|
m_outputStrides[i] = m_outputStrides[i-1] * m_dimensions[i-1];
|
|
m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1];
|
|
m_inputStrides[i-1] *= op.strides()[i-1];
|
|
}
|
|
m_inputStrides[NumDims-1] *= op.strides()[NumDims-1];
|
|
}
|
|
|
|
typedef typename XprType::Scalar Scalar;
|
|
typedef typename XprType::CoeffReturnType CoeffReturnType;
|
|
typedef typename XprType::PacketReturnType PacketReturnType;
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) {
|
|
m_impl.evalSubExprsIfNeeded(NULL);
|
|
return true;
|
|
}
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
|
|
m_impl.cleanup();
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
|
|
{
|
|
Index inputIndex = 0;
|
|
for (int i = NumDims - 1; i > 0; --i) {
|
|
const Index idx = index / m_outputStrides[i];
|
|
inputIndex += idx * m_inputStrides[i];
|
|
index -= idx * m_outputStrides[i];
|
|
}
|
|
inputIndex += index * m_inputStrides[0];
|
|
return m_impl.coeff(inputIndex);
|
|
}
|
|
|
|
template<int LoadMode>
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
|
|
{
|
|
const int packetSize = internal::unpacket_traits<PacketReturnType>::size;
|
|
EIGEN_STATIC_ASSERT(packetSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
|
|
eigen_assert(index+packetSize-1 < dimensions().TotalSize());
|
|
|
|
Index inputIndices[] = {0, 0};
|
|
Index indices[] = {index, index + packetSize - 1};
|
|
for (int i = NumDims - 1; i > 0; --i) {
|
|
const Index idx0 = indices[0] / m_outputStrides[i];
|
|
const Index idx1 = indices[1] / m_outputStrides[i];
|
|
inputIndices[0] += idx0 * m_inputStrides[i];
|
|
inputIndices[1] += idx1 * m_inputStrides[i];
|
|
indices[0] -= idx0 * m_outputStrides[i];
|
|
indices[1] -= idx1 * m_outputStrides[i];
|
|
}
|
|
inputIndices[0] += indices[0] * m_inputStrides[0];
|
|
inputIndices[1] += indices[1] * m_inputStrides[0];
|
|
if (inputIndices[1] - inputIndices[0] == packetSize - 1) {
|
|
PacketReturnType rslt = m_impl.template packet<Unaligned>(inputIndices[0]);
|
|
return rslt;
|
|
}
|
|
else {
|
|
EIGEN_ALIGN_DEFAULT typename internal::remove_const<CoeffReturnType>::type values[packetSize];
|
|
values[0] = m_impl.coeff(inputIndices[0]);
|
|
values[packetSize-1] = m_impl.coeff(inputIndices[1]);
|
|
for (int i = 1; i < packetSize-1; ++i) {
|
|
values[i] = coeff(index+i);
|
|
}
|
|
PacketReturnType rslt = internal::pload<PacketReturnType>(values);
|
|
return rslt;
|
|
}
|
|
}
|
|
|
|
Scalar* data() const { return NULL; }
|
|
|
|
protected:
|
|
Dimensions m_dimensions;
|
|
array<Index, NumDims> m_outputStrides;
|
|
array<Index, NumDims> m_inputStrides;
|
|
TensorEvaluator<ArgType, Device> m_impl;
|
|
};
|
|
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_CXX11_TENSOR_TENSOR_STRIDING_H
|