eigen/Eigen/src/Core/Zero.h
Benoit Jacob 89a134ba0b big architecture change dissociating "actual" dimensions from "maximum possible"
dimension. The advantage is that evaluating a dynamic-sized block in a fixed-size
matrix no longer causes a dynamic memory allocation. Other new thing:
IntAtRunTimeIfDynamic allows storing an integer at zero cost if it is known at
compile time.
2008-01-13 19:55:23 +00:00

167 lines
5.6 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob@math.jussieu.fr>
//
// Eigen is free software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the Free Software
// Foundation; either version 2 or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
// details.
//
// You should have received a copy of the GNU General Public License along
// with Eigen; if not, write to the Free Software Foundation, Inc., 51
// Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
//
// As a special exception, if other files instantiate templates or use macros
// or functions from this file, or you compile this file and link it
// with other works to produce a work based on this file, this file does not
// by itself cause the resulting work to be covered by the GNU General Public
// License. This exception does not invalidate any other reasons why a work
// based on this file might be covered by the GNU General Public License.
#ifndef EIGEN_ZERO_H
#define EIGEN_ZERO_H
/** \class Zero
*
* \brief Expression of a zero matrix or vector.
*
* \sa MatrixBase::zero(), MatrixBase::zero(int), MatrixBase::zero(int,int),
* MatrixBase::setZero(), MatrixBase::isZero()
*/
template<typename MatrixType> class Zero : NoOperatorEquals,
public MatrixBase<typename MatrixType::Scalar, Zero<MatrixType> >
{
public:
typedef typename MatrixType::Scalar Scalar;
friend class MatrixBase<Scalar, Zero<MatrixType> >;
private:
enum {
RowsAtCompileTime = MatrixType::Traits::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::Traits::ColsAtCompileTime,
MaxRowsAtCompileTime = MatrixType::Traits::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::Traits::MaxColsAtCompileTime
};
const Zero& _ref() const { return *this; }
int _rows() const { return m_rows.value(); }
int _cols() const { return m_cols.value(); }
Scalar _coeff(int, int) const
{
return static_cast<Scalar>(0);
}
public:
Zero(int rows, int cols) : m_rows(rows), m_cols(cols)
{
assert(rows > 0
&& (RowsAtCompileTime == Dynamic || RowsAtCompileTime == rows)
&& cols > 0
&& (ColsAtCompileTime == Dynamic || ColsAtCompileTime == cols));
}
protected:
const IntAtRunTimeIfDynamic<RowsAtCompileTime> m_rows;
const IntAtRunTimeIfDynamic<ColsAtCompileTime> m_cols;
};
/** \returns an expression of a zero matrix.
*
* The parameters \a rows and \a cols are the number of rows and of columns of
* the returned matrix. Must be compatible with this MatrixBase type.
*
* This variant is meant to be used for dynamic-size matrix types. For fixed-size types,
* it is redundant to pass \a rows and \a cols as arguments, so zero() should be used
* instead.
*
* Example: \include MatrixBase_zero_int_int.cpp
* Output: \verbinclude MatrixBase_zero_int_int.out
*
* \sa zero(), zero(int)
*/
template<typename Scalar, typename Derived>
const Zero<Derived> MatrixBase<Scalar, Derived>::zero(int rows, int cols)
{
return Zero<Derived>(rows, cols);
}
/** \returns an expression of a zero vector.
*
* The parameter \a size is the size of the returned vector.
* Must be compatible with this MatrixBase type.
*
* \only_for_vectors
*
* This variant is meant to be used for dynamic-size vector types. For fixed-size types,
* it is redundant to pass \a size as argument, so zero() should be used
* instead.
*
* Example: \include MatrixBase_zero_int.cpp
* Output: \verbinclude MatrixBase_zero_int.out
*
* \sa zero(), zero(int,int)
*/
template<typename Scalar, typename Derived>
const Zero<Derived> MatrixBase<Scalar, Derived>::zero(int size)
{
assert(Traits::IsVectorAtCompileTime);
if(Traits::RowsAtCompileTime == 1) return Zero<Derived>(1, size);
else return Zero<Derived>(size, 1);
}
/** \returns an expression of a fixed-size zero matrix or vector.
*
* This variant is only for fixed-size MatrixBase types. For dynamic-size types, you
* need to use the variants taking size arguments.
*
* Example: \include MatrixBase_zero.cpp
* Output: \verbinclude MatrixBase_zero.out
*
* \sa zero(int), zero(int,int)
*/
template<typename Scalar, typename Derived>
const Zero<Derived> MatrixBase<Scalar, Derived>::zero()
{
return Zero<Derived>(Traits::RowsAtCompileTime, Traits::ColsAtCompileTime);
}
/** \returns true if *this is approximately equal to the zero matrix,
* within the precision given by \a prec.
*
* Example: \include MatrixBase_isZero.cpp
* Output: \verbinclude MatrixBase_isZero.out
*
* \sa class Zero, zero()
*/
template<typename Scalar, typename Derived>
bool MatrixBase<Scalar, Derived>::isZero
(typename NumTraits<Scalar>::Real prec) const
{
for(int j = 0; j < cols(); j++)
for(int i = 0; i < rows(); i++)
if(!Eigen::isMuchSmallerThan(coeff(i, j), static_cast<Scalar>(1), prec))
return false;
return true;
}
/** Sets all coefficients in this expression to zero.
*
* Example: \include MatrixBase_setZero.cpp
* Output: \verbinclude MatrixBase_setZero.out
*
* \sa class Zero, zero()
*/
template<typename Scalar, typename Derived>
Derived& MatrixBase<Scalar, Derived>::setZero()
{
return *this = Zero<Derived>(rows(), cols());
}
#endif // EIGEN_ZERO_H