mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-05-25 07:36:56 +08:00

Currently only the following platform/operations are supported: - SSE2 compatible architecture - compiler compatible with intel's SSE2 intrinsics - float, double and int data types - fixed size matrices with a storage major dimension multiple of 4 (or 2 for double) - scalar-matrix product, component wise: +,-,*,min,max - matrix-matrix product only if the left matrix is vectorizable and column major or the right matrix is vectorizable and row major, e.g.: a.transpose() * b is not vectorized with the default column major storage. To use it you must define EIGEN_VECTORIZE and EIGEN_INTEL_PLATFORM.
162 lines
5.1 KiB
C++
162 lines
5.1 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra. Eigen itself is part of the KDE project.
|
|
//
|
|
// Copyright (C) 2006-2008 Benoit Jacob <jacob@math.jussieu.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#ifndef EIGEN_IDENTITY_H
|
|
#define EIGEN_IDENTITY_H
|
|
|
|
/** \class Identity
|
|
*
|
|
* \brief Expression of the identity matrix of some size.
|
|
*
|
|
* \sa MatrixBase::identity(), MatrixBase::identity(int,int), MatrixBase::setIdentity()
|
|
*/
|
|
template<typename MatrixType>
|
|
struct ei_traits<Identity<MatrixType> >
|
|
{
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
enum {
|
|
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
|
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
|
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
|
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
|
|
Flags = MatrixType::Flags & ~VectorizableBit,
|
|
CoeffReadCost = NumTraits<Scalar>::ReadCost
|
|
};
|
|
};
|
|
|
|
template<typename MatrixType> class Identity : ei_no_assignment_operator,
|
|
public MatrixBase<Identity<MatrixType> >
|
|
{
|
|
public:
|
|
|
|
EIGEN_GENERIC_PUBLIC_INTERFACE(Identity)
|
|
|
|
Identity(int rows, int cols) : m_rows(rows), m_cols(cols)
|
|
{
|
|
ei_assert(rows > 0
|
|
&& (RowsAtCompileTime == Dynamic || RowsAtCompileTime == rows)
|
|
&& cols > 0
|
|
&& (ColsAtCompileTime == Dynamic || ColsAtCompileTime == cols));
|
|
}
|
|
|
|
private:
|
|
|
|
int _rows() const { return m_rows.value(); }
|
|
int _cols() const { return m_cols.value(); }
|
|
|
|
const Scalar _coeff(int row, int col) const
|
|
{
|
|
return row == col ? static_cast<Scalar>(1) : static_cast<Scalar>(0);
|
|
}
|
|
|
|
protected:
|
|
|
|
const ei_int_if_dynamic<RowsAtCompileTime> m_rows;
|
|
const ei_int_if_dynamic<ColsAtCompileTime> m_cols;
|
|
};
|
|
|
|
/** \returns an expression of the identity matrix (not necessarily square).
|
|
*
|
|
* The parameters \a rows and \a cols are the number of rows and of columns of
|
|
* the returned matrix. Must be compatible with this MatrixBase type.
|
|
*
|
|
* This variant is meant to be used for dynamic-size matrix types. For fixed-size types,
|
|
* it is redundant to pass \a rows and \a cols as arguments, so identity() should be used
|
|
* instead.
|
|
*
|
|
* Example: \include MatrixBase_identity_int_int.cpp
|
|
* Output: \verbinclude MatrixBase_identity_int_int.out
|
|
*
|
|
* \sa identity(), setIdentity(), isIdentity()
|
|
*/
|
|
template<typename Derived>
|
|
const Identity<Derived> MatrixBase<Derived>::identity(int rows, int cols)
|
|
{
|
|
return Identity<Derived>(rows, cols);
|
|
}
|
|
|
|
/** \returns an expression of the identity matrix (not necessarily square).
|
|
*
|
|
* This variant is only for fixed-size MatrixBase types. For dynamic-size types, you
|
|
* need to use the variant taking size arguments.
|
|
*
|
|
* Example: \include MatrixBase_identity.cpp
|
|
* Output: \verbinclude MatrixBase_identity.out
|
|
*
|
|
* \sa identity(int,int), setIdentity(), isIdentity()
|
|
*/
|
|
template<typename Derived>
|
|
const Identity<Derived> MatrixBase<Derived>::identity()
|
|
{
|
|
return Identity<Derived>(RowsAtCompileTime, ColsAtCompileTime);
|
|
}
|
|
|
|
/** \returns true if *this is approximately equal to the identity matrix
|
|
* (not necessarily square),
|
|
* within the precision given by \a prec.
|
|
*
|
|
* Example: \include MatrixBase_isIdentity.cpp
|
|
* Output: \verbinclude MatrixBase_isIdentity.out
|
|
*
|
|
* \sa class Identity, identity(), identity(int,int), setIdentity()
|
|
*/
|
|
template<typename Derived>
|
|
bool MatrixBase<Derived>::isIdentity
|
|
(typename NumTraits<Scalar>::Real prec) const
|
|
{
|
|
for(int j = 0; j < cols(); j++)
|
|
{
|
|
for(int i = 0; i < rows(); i++)
|
|
{
|
|
if(i == j)
|
|
{
|
|
if(!ei_isApprox(coeff(i, j), static_cast<Scalar>(1), prec))
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
if(!ei_isMuchSmallerThan(coeff(i, j), static_cast<RealScalar>(1), prec))
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/** Writes the identity expression (not necessarily square) into *this.
|
|
*
|
|
* Example: \include MatrixBase_setIdentity.cpp
|
|
* Output: \verbinclude MatrixBase_setIdentity.out
|
|
*
|
|
* \sa class Identity, identity(), identity(int,int), isIdentity()
|
|
*/
|
|
template<typename Derived>
|
|
Derived& MatrixBase<Derived>::setIdentity()
|
|
{
|
|
return *this = Identity<Derived>(rows(), cols());
|
|
}
|
|
|
|
|
|
#endif // EIGEN_IDENTITY_H
|