eigen/Eigen/src/Core/Identity.h
Gael Guennebaud 1985fb0551 Added initial experimental support for explicit vectorization.
Currently only the following platform/operations are supported:
 - SSE2 compatible architecture
 - compiler compatible with intel's SSE2 intrinsics
 - float, double and int data types
 - fixed size matrices with a storage major dimension multiple of 4 (or 2 for double)
 - scalar-matrix product, component wise: +,-,*,min,max
 - matrix-matrix product only if the left matrix is vectorizable and column major
   or the right matrix is vectorizable and row major, e.g.:
   a.transpose() * b is not vectorized with the default column major storage.
To use it you must define EIGEN_VECTORIZE and EIGEN_INTEL_PLATFORM.
2008-04-09 12:31:55 +00:00

162 lines
5.1 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob@math.jussieu.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_IDENTITY_H
#define EIGEN_IDENTITY_H
/** \class Identity
*
* \brief Expression of the identity matrix of some size.
*
* \sa MatrixBase::identity(), MatrixBase::identity(int,int), MatrixBase::setIdentity()
*/
template<typename MatrixType>
struct ei_traits<Identity<MatrixType> >
{
typedef typename MatrixType::Scalar Scalar;
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
Flags = MatrixType::Flags & ~VectorizableBit,
CoeffReadCost = NumTraits<Scalar>::ReadCost
};
};
template<typename MatrixType> class Identity : ei_no_assignment_operator,
public MatrixBase<Identity<MatrixType> >
{
public:
EIGEN_GENERIC_PUBLIC_INTERFACE(Identity)
Identity(int rows, int cols) : m_rows(rows), m_cols(cols)
{
ei_assert(rows > 0
&& (RowsAtCompileTime == Dynamic || RowsAtCompileTime == rows)
&& cols > 0
&& (ColsAtCompileTime == Dynamic || ColsAtCompileTime == cols));
}
private:
int _rows() const { return m_rows.value(); }
int _cols() const { return m_cols.value(); }
const Scalar _coeff(int row, int col) const
{
return row == col ? static_cast<Scalar>(1) : static_cast<Scalar>(0);
}
protected:
const ei_int_if_dynamic<RowsAtCompileTime> m_rows;
const ei_int_if_dynamic<ColsAtCompileTime> m_cols;
};
/** \returns an expression of the identity matrix (not necessarily square).
*
* The parameters \a rows and \a cols are the number of rows and of columns of
* the returned matrix. Must be compatible with this MatrixBase type.
*
* This variant is meant to be used for dynamic-size matrix types. For fixed-size types,
* it is redundant to pass \a rows and \a cols as arguments, so identity() should be used
* instead.
*
* Example: \include MatrixBase_identity_int_int.cpp
* Output: \verbinclude MatrixBase_identity_int_int.out
*
* \sa identity(), setIdentity(), isIdentity()
*/
template<typename Derived>
const Identity<Derived> MatrixBase<Derived>::identity(int rows, int cols)
{
return Identity<Derived>(rows, cols);
}
/** \returns an expression of the identity matrix (not necessarily square).
*
* This variant is only for fixed-size MatrixBase types. For dynamic-size types, you
* need to use the variant taking size arguments.
*
* Example: \include MatrixBase_identity.cpp
* Output: \verbinclude MatrixBase_identity.out
*
* \sa identity(int,int), setIdentity(), isIdentity()
*/
template<typename Derived>
const Identity<Derived> MatrixBase<Derived>::identity()
{
return Identity<Derived>(RowsAtCompileTime, ColsAtCompileTime);
}
/** \returns true if *this is approximately equal to the identity matrix
* (not necessarily square),
* within the precision given by \a prec.
*
* Example: \include MatrixBase_isIdentity.cpp
* Output: \verbinclude MatrixBase_isIdentity.out
*
* \sa class Identity, identity(), identity(int,int), setIdentity()
*/
template<typename Derived>
bool MatrixBase<Derived>::isIdentity
(typename NumTraits<Scalar>::Real prec) const
{
for(int j = 0; j < cols(); j++)
{
for(int i = 0; i < rows(); i++)
{
if(i == j)
{
if(!ei_isApprox(coeff(i, j), static_cast<Scalar>(1), prec))
return false;
}
else
{
if(!ei_isMuchSmallerThan(coeff(i, j), static_cast<RealScalar>(1), prec))
return false;
}
}
}
return true;
}
/** Writes the identity expression (not necessarily square) into *this.
*
* Example: \include MatrixBase_setIdentity.cpp
* Output: \verbinclude MatrixBase_setIdentity.out
*
* \sa class Identity, identity(), identity(int,int), isIdentity()
*/
template<typename Derived>
Derived& MatrixBase<Derived>::setIdentity()
{
return *this = Identity<Derived>(rows(), cols());
}
#endif // EIGEN_IDENTITY_H