eigen/test/sparse_product.cpp
Gael Guennebaud a9688f0b71 - add diagonal * sparse product as an expression
- split sparse_basic unit test
- various fixes in sparse module
2009-02-09 09:59:30 +00:00

133 lines
5.7 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include "sparse.h"
template<typename SparseMatrixType> void sparse_product(const SparseMatrixType& ref)
{
const int rows = ref.rows();
const int cols = ref.cols();
typedef typename SparseMatrixType::Scalar Scalar;
enum { Flags = SparseMatrixType::Flags };
double density = std::max(8./(rows*cols), 0.01);
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
typedef Matrix<Scalar,Dynamic,1> DenseVector;
Scalar eps = 1e-6;
// test matrix-matrix product
/*
{
DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
DenseMatrix refMat3 = DenseMatrix::Zero(rows, rows);
DenseMatrix refMat4 = DenseMatrix::Zero(rows, rows);
DenseMatrix dm4 = DenseMatrix::Zero(rows, rows);
SparseMatrixType m2(rows, rows);
SparseMatrixType m3(rows, rows);
SparseMatrixType m4(rows, rows);
initSparse<Scalar>(density, refMat2, m2);
initSparse<Scalar>(density, refMat3, m3);
initSparse<Scalar>(density, refMat4, m4);
VERIFY_IS_APPROX(m4=m2*m3, refMat4=refMat2*refMat3);
VERIFY_IS_APPROX(m4=m2.transpose()*m3, refMat4=refMat2.transpose()*refMat3);
VERIFY_IS_APPROX(m4=m2.transpose()*m3.transpose(), refMat4=refMat2.transpose()*refMat3.transpose());
VERIFY_IS_APPROX(m4=m2*m3.transpose(), refMat4=refMat2*refMat3.transpose());
// sparse * dense
VERIFY_IS_APPROX(dm4=m2*refMat3, refMat4=refMat2*refMat3);
VERIFY_IS_APPROX(dm4=m2*refMat3.transpose(), refMat4=refMat2*refMat3.transpose());
VERIFY_IS_APPROX(dm4=m2.transpose()*refMat3, refMat4=refMat2.transpose()*refMat3);
VERIFY_IS_APPROX(dm4=m2.transpose()*refMat3.transpose(), refMat4=refMat2.transpose()*refMat3.transpose());
// dense * sparse
VERIFY_IS_APPROX(dm4=refMat2*m3, refMat4=refMat2*refMat3);
VERIFY_IS_APPROX(dm4=refMat2*m3.transpose(), refMat4=refMat2*refMat3.transpose());
VERIFY_IS_APPROX(dm4=refMat2.transpose()*m3, refMat4=refMat2.transpose()*refMat3);
VERIFY_IS_APPROX(dm4=refMat2.transpose()*m3.transpose(), refMat4=refMat2.transpose()*refMat3.transpose());
}
*/
// test matrix - diagonal product
{
DenseMatrix refM2 = DenseMatrix::Zero(rows, rows);
DenseMatrix refM3 = DenseMatrix::Zero(rows, rows);
DiagonalMatrix<Scalar,Dynamic> d1(DenseVector::Random(rows));
SparseMatrixType m2(rows, rows);
SparseMatrixType m3(rows, rows);
initSparse<Scalar>(density, refM2, m2);
initSparse<Scalar>(density, refM3, m3);
// std::cerr << "foo\n" << (m2*d1).toDense() << "\n\n" << refM2*d1 << "\n\n";
VERIFY_IS_APPROX(m3=m2*d1, refM3=refM2*d1);
VERIFY_IS_APPROX(m3=m2.transpose()*d1, refM3=refM2.transpose()*d1);
VERIFY_IS_APPROX(m3=d1*m2, refM3=d1*refM2);
// std::cerr << "foo\n" << (d1*m2.transpose()).toDense() << "\n\n" << d1 * refM2.transpose() << "\n\n";
VERIFY_IS_APPROX(m3=d1*m2.transpose(), refM3=d1 * refM2.transpose());
}
// test self adjoint products
// {
// DenseMatrix b = DenseMatrix::Random(rows, rows);
// DenseMatrix x = DenseMatrix::Random(rows, rows);
// DenseMatrix refX = DenseMatrix::Random(rows, rows);
// DenseMatrix refUp = DenseMatrix::Zero(rows, rows);
// DenseMatrix refLo = DenseMatrix::Zero(rows, rows);
// DenseMatrix refS = DenseMatrix::Zero(rows, rows);
// SparseMatrixType mUp(rows, rows);
// SparseMatrixType mLo(rows, rows);
// SparseMatrixType mS(rows, rows);
// do {
// initSparse<Scalar>(density, refUp, mUp, ForceRealDiag|/*ForceNonZeroDiag|*/MakeUpperTriangular);
// } while (refUp.isZero());
// refLo = refUp.transpose().conjugate();
// mLo = mUp.transpose().conjugate();
// refS = refUp + refLo;
// refS.diagonal() *= 0.5;
// mS = mUp + mLo;
// for (int k=0; k<mS.outerSize(); ++k)
// for (typename SparseMatrixType::InnerIterator it(mS,k); it; ++it)
// if (it.index() == k)
// it.valueRef() *= 0.5;
//
// VERIFY_IS_APPROX(refS.adjoint(), refS);
// VERIFY_IS_APPROX(mS.transpose().conjugate(), mS);
// VERIFY_IS_APPROX(mS, refS);
// VERIFY_IS_APPROX(x=mS*b, refX=refS*b);
// VERIFY_IS_APPROX(x=mUp.template marked<UpperTriangular|SelfAdjoint>()*b, refX=refS*b);
// VERIFY_IS_APPROX(x=mLo.template marked<LowerTriangular|SelfAdjoint>()*b, refX=refS*b);
// VERIFY_IS_APPROX(x=mS.template marked<SelfAdjoint>()*b, refX=refS*b);
// }
}
void test_sparse_product()
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST( sparse_product(SparseMatrix<double>(8, 8)) );
CALL_SUBTEST( sparse_product(SparseMatrix<std::complex<double> >(16, 16)) );
CALL_SUBTEST( sparse_product(SparseMatrix<double>(33, 33)) );
CALL_SUBTEST( sparse_product(DynamicSparseMatrix<double>(8, 8)) );
}
}