mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-05-02 16:54:10 +08:00
134 lines
5.2 KiB
C++
134 lines
5.2 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008-2010 Gael Guennebaud <g.gael@free.fr>
|
|
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#ifndef EIGEN_CWISE_UNARY_OP_H
|
|
#define EIGEN_CWISE_UNARY_OP_H
|
|
|
|
/** \class CwiseUnaryOp
|
|
*
|
|
* \brief Generic expression where a coefficient-wise unary operator is applied to an expression
|
|
*
|
|
* \param UnaryOp template functor implementing the operator
|
|
* \param XprType the type of the expression to which we are applying the unary operator
|
|
*
|
|
* This class represents an expression where a unary operator is applied to an expression.
|
|
* It is the return type of all operations taking exactly 1 input expression, regardless of the
|
|
* presence of other inputs such as scalars. For example, the operator* in the expression 3*matrix
|
|
* is considered unary, because only the right-hand side is an expression, and its
|
|
* return type is a specialization of CwiseUnaryOp.
|
|
*
|
|
* Most of the time, this is the only way that it is used, so you typically don't have to name
|
|
* CwiseUnaryOp types explicitly.
|
|
*
|
|
* \sa MatrixBase::unaryExpr(const CustomUnaryOp &) const, class CwiseBinaryOp, class CwiseNullaryOp
|
|
*/
|
|
template<typename UnaryOp, typename XprType>
|
|
struct ei_traits<CwiseUnaryOp<UnaryOp, XprType> >
|
|
: ei_traits<XprType>
|
|
{
|
|
typedef typename ei_result_of<
|
|
UnaryOp(typename XprType::Scalar)
|
|
>::type Scalar;
|
|
typedef typename XprType::Nested XprTypeNested;
|
|
typedef typename ei_unref<XprTypeNested>::type _XprTypeNested;
|
|
enum {
|
|
Flags = _XprTypeNested::Flags & (
|
|
HereditaryBits | LinearAccessBit | AlignedBit
|
|
| (ei_functor_traits<UnaryOp>::PacketAccess ? PacketAccessBit : 0)),
|
|
CoeffReadCost = _XprTypeNested::CoeffReadCost + ei_functor_traits<UnaryOp>::Cost
|
|
};
|
|
};
|
|
|
|
template<typename UnaryOp, typename XprType, typename StorageKind>
|
|
class CwiseUnaryOpImpl;
|
|
|
|
template<typename UnaryOp, typename XprType>
|
|
class CwiseUnaryOp : ei_no_assignment_operator,
|
|
public CwiseUnaryOpImpl<UnaryOp, XprType, typename ei_traits<XprType>::StorageKind>
|
|
{
|
|
public:
|
|
|
|
typedef typename CwiseUnaryOpImpl<UnaryOp, XprType,typename ei_traits<XprType>::StorageKind>::Base Base;
|
|
EIGEN_GENERIC_PUBLIC_INTERFACE_NEW(CwiseUnaryOp)
|
|
|
|
inline CwiseUnaryOp(const XprType& xpr, const UnaryOp& func = UnaryOp())
|
|
: m_xpr(xpr), m_functor(func) {}
|
|
|
|
EIGEN_STRONG_INLINE Index rows() const { return m_xpr.rows(); }
|
|
EIGEN_STRONG_INLINE Index cols() const { return m_xpr.cols(); }
|
|
|
|
/** \returns the functor representing the unary operation */
|
|
const UnaryOp& functor() const { return m_functor; }
|
|
|
|
/** \returns the nested expression */
|
|
const typename ei_cleantype<typename XprType::Nested>::type&
|
|
nestedExpression() const { return m_xpr; }
|
|
|
|
/** \returns the nested expression */
|
|
typename ei_cleantype<typename XprType::Nested>::type&
|
|
nestedExpression() { return m_xpr.const_cast_derived(); }
|
|
|
|
protected:
|
|
const typename XprType::Nested m_xpr;
|
|
const UnaryOp m_functor;
|
|
};
|
|
|
|
// This is the generic implementation for dense storage.
|
|
// It can be used for any expression types implementing the dense concept.
|
|
template<typename UnaryOp, typename XprType>
|
|
class CwiseUnaryOpImpl<UnaryOp,XprType,Dense>
|
|
: public ei_dense_xpr_base<CwiseUnaryOp<UnaryOp, XprType> >::type
|
|
{
|
|
public:
|
|
|
|
typedef CwiseUnaryOp<UnaryOp, XprType> Derived;
|
|
typedef typename ei_dense_xpr_base<CwiseUnaryOp<UnaryOp, XprType> >::type Base;
|
|
EIGEN_DENSE_PUBLIC_INTERFACE(Derived)
|
|
|
|
EIGEN_STRONG_INLINE const Scalar coeff(Index row, Index col) const
|
|
{
|
|
return derived().functor()(derived().nestedExpression().coeff(row, col));
|
|
}
|
|
|
|
template<int LoadMode>
|
|
EIGEN_STRONG_INLINE PacketScalar packet(Index row, Index col) const
|
|
{
|
|
return derived().functor().packetOp(derived().nestedExpression().template packet<LoadMode>(row, col));
|
|
}
|
|
|
|
EIGEN_STRONG_INLINE const Scalar coeff(Index index) const
|
|
{
|
|
return derived().functor()(derived().nestedExpression().coeff(index));
|
|
}
|
|
|
|
template<int LoadMode>
|
|
EIGEN_STRONG_INLINE PacketScalar packet(Index index) const
|
|
{
|
|
return derived().functor().packetOp(derived().nestedExpression().template packet<LoadMode>(index));
|
|
}
|
|
};
|
|
|
|
#endif // EIGEN_CWISE_UNARY_OP_H
|