mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-28 23:04:18 +08:00
551 lines
20 KiB
C++
Executable File
551 lines
20 KiB
C++
Executable File
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_META_H
|
|
#define EIGEN_META_H
|
|
|
|
#if defined(__CUDA_ARCH__)
|
|
#include <cfloat>
|
|
#include <math_constants.h>
|
|
#endif
|
|
|
|
#if EIGEN_COMP_ICC>=1600 && __cplusplus >= 201103L
|
|
#include <cstdint>
|
|
#endif
|
|
|
|
namespace Eigen {
|
|
|
|
typedef EIGEN_DEFAULT_DENSE_INDEX_TYPE DenseIndex;
|
|
|
|
/**
|
|
* \brief The Index type as used for the API.
|
|
* \details To change this, \c \#define the preprocessor symbol \c EIGEN_DEFAULT_DENSE_INDEX_TYPE.
|
|
* \sa \blank \ref TopicPreprocessorDirectives, StorageIndex.
|
|
*/
|
|
|
|
typedef EIGEN_DEFAULT_DENSE_INDEX_TYPE Index;
|
|
|
|
namespace internal {
|
|
|
|
/** \internal
|
|
* \file Meta.h
|
|
* This file contains generic metaprogramming classes which are not specifically related to Eigen.
|
|
* \note In case you wonder, yes we're aware that Boost already provides all these features,
|
|
* we however don't want to add a dependency to Boost.
|
|
*/
|
|
|
|
// Only recent versions of ICC complain about using ptrdiff_t to hold pointers,
|
|
// and older versions do not provide *intptr_t types.
|
|
#if EIGEN_COMP_ICC>=1600 && __cplusplus >= 201103L
|
|
typedef std::intptr_t IntPtr;
|
|
typedef std::uintptr_t UIntPtr;
|
|
#else
|
|
typedef std::ptrdiff_t IntPtr;
|
|
typedef std::size_t UIntPtr;
|
|
#endif
|
|
|
|
struct true_type { enum { value = 1 }; };
|
|
struct false_type { enum { value = 0 }; };
|
|
|
|
template<bool Condition, typename Then, typename Else>
|
|
struct conditional { typedef Then type; };
|
|
|
|
template<typename Then, typename Else>
|
|
struct conditional <false, Then, Else> { typedef Else type; };
|
|
|
|
template<typename T, typename U> struct is_same { enum { value = 0 }; };
|
|
template<typename T> struct is_same<T,T> { enum { value = 1 }; };
|
|
|
|
template<typename T> struct remove_reference { typedef T type; };
|
|
template<typename T> struct remove_reference<T&> { typedef T type; };
|
|
|
|
template<typename T> struct remove_pointer { typedef T type; };
|
|
template<typename T> struct remove_pointer<T*> { typedef T type; };
|
|
template<typename T> struct remove_pointer<T*const> { typedef T type; };
|
|
|
|
template <class T> struct remove_const { typedef T type; };
|
|
template <class T> struct remove_const<const T> { typedef T type; };
|
|
template <class T> struct remove_const<const T[]> { typedef T type[]; };
|
|
template <class T, unsigned int Size> struct remove_const<const T[Size]> { typedef T type[Size]; };
|
|
|
|
template<typename T> struct remove_all { typedef T type; };
|
|
template<typename T> struct remove_all<const T> { typedef typename remove_all<T>::type type; };
|
|
template<typename T> struct remove_all<T const&> { typedef typename remove_all<T>::type type; };
|
|
template<typename T> struct remove_all<T&> { typedef typename remove_all<T>::type type; };
|
|
template<typename T> struct remove_all<T const*> { typedef typename remove_all<T>::type type; };
|
|
template<typename T> struct remove_all<T*> { typedef typename remove_all<T>::type type; };
|
|
|
|
template<typename T> struct is_arithmetic { enum { value = false }; };
|
|
template<> struct is_arithmetic<float> { enum { value = true }; };
|
|
template<> struct is_arithmetic<double> { enum { value = true }; };
|
|
template<> struct is_arithmetic<long double> { enum { value = true }; };
|
|
template<> struct is_arithmetic<bool> { enum { value = true }; };
|
|
template<> struct is_arithmetic<char> { enum { value = true }; };
|
|
template<> struct is_arithmetic<signed char> { enum { value = true }; };
|
|
template<> struct is_arithmetic<unsigned char> { enum { value = true }; };
|
|
template<> struct is_arithmetic<signed short> { enum { value = true }; };
|
|
template<> struct is_arithmetic<unsigned short>{ enum { value = true }; };
|
|
template<> struct is_arithmetic<signed int> { enum { value = true }; };
|
|
template<> struct is_arithmetic<unsigned int> { enum { value = true }; };
|
|
template<> struct is_arithmetic<signed long> { enum { value = true }; };
|
|
template<> struct is_arithmetic<unsigned long> { enum { value = true }; };
|
|
|
|
#if EIGEN_HAS_CXX11
|
|
using std::is_integral;
|
|
#else
|
|
template<typename T> struct is_integral { enum { value = false }; };
|
|
template<> struct is_integral<bool> { enum { value = true }; };
|
|
template<> struct is_integral<char> { enum { value = true }; };
|
|
template<> struct is_integral<signed char> { enum { value = true }; };
|
|
template<> struct is_integral<unsigned char> { enum { value = true }; };
|
|
template<> struct is_integral<signed short> { enum { value = true }; };
|
|
template<> struct is_integral<unsigned short> { enum { value = true }; };
|
|
template<> struct is_integral<signed int> { enum { value = true }; };
|
|
template<> struct is_integral<unsigned int> { enum { value = true }; };
|
|
template<> struct is_integral<signed long> { enum { value = true }; };
|
|
template<> struct is_integral<unsigned long> { enum { value = true }; };
|
|
#endif
|
|
|
|
|
|
template <typename T> struct add_const { typedef const T type; };
|
|
template <typename T> struct add_const<T&> { typedef T& type; };
|
|
|
|
template <typename T> struct is_const { enum { value = 0 }; };
|
|
template <typename T> struct is_const<T const> { enum { value = 1 }; };
|
|
|
|
template<typename T> struct add_const_on_value_type { typedef const T type; };
|
|
template<typename T> struct add_const_on_value_type<T&> { typedef T const& type; };
|
|
template<typename T> struct add_const_on_value_type<T*> { typedef T const* type; };
|
|
template<typename T> struct add_const_on_value_type<T* const> { typedef T const* const type; };
|
|
template<typename T> struct add_const_on_value_type<T const* const> { typedef T const* const type; };
|
|
|
|
|
|
template<typename From, typename To>
|
|
struct is_convertible_impl
|
|
{
|
|
private:
|
|
struct any_conversion
|
|
{
|
|
template <typename T> any_conversion(const volatile T&);
|
|
template <typename T> any_conversion(T&);
|
|
};
|
|
struct yes {int a[1];};
|
|
struct no {int a[2];};
|
|
|
|
static yes test(const To&, int);
|
|
static no test(any_conversion, ...);
|
|
|
|
public:
|
|
static From ms_from;
|
|
#ifdef __INTEL_COMPILER
|
|
#pragma warning push
|
|
#pragma warning ( disable : 2259 )
|
|
#endif
|
|
enum { value = sizeof(test(ms_from, 0))==sizeof(yes) };
|
|
#ifdef __INTEL_COMPILER
|
|
#pragma warning pop
|
|
#endif
|
|
};
|
|
|
|
template<typename From, typename To>
|
|
struct is_convertible
|
|
{
|
|
enum { value = is_convertible_impl<typename remove_all<From>::type,
|
|
typename remove_all<To >::type>::value };
|
|
};
|
|
|
|
/** \internal Allows to enable/disable an overload
|
|
* according to a compile time condition.
|
|
*/
|
|
template<bool Condition, typename T=void> struct enable_if;
|
|
|
|
template<typename T> struct enable_if<true,T>
|
|
{ typedef T type; };
|
|
|
|
#if defined(__CUDA_ARCH__)
|
|
#if !defined(__FLT_EPSILON__)
|
|
#define __FLT_EPSILON__ FLT_EPSILON
|
|
#define __DBL_EPSILON__ DBL_EPSILON
|
|
#endif
|
|
|
|
namespace device {
|
|
|
|
template<typename T> struct numeric_limits
|
|
{
|
|
EIGEN_DEVICE_FUNC
|
|
static T epsilon() { return 0; }
|
|
static T (max)() { assert(false && "Highest not supported for this type"); }
|
|
static T (min)() { assert(false && "Lowest not supported for this type"); }
|
|
static T infinity() { assert(false && "Infinity not supported for this type"); }
|
|
static T quiet_NaN() { assert(false && "quiet_NaN not supported for this type"); }
|
|
};
|
|
template<> struct numeric_limits<float>
|
|
{
|
|
EIGEN_DEVICE_FUNC
|
|
static float epsilon() { return __FLT_EPSILON__; }
|
|
EIGEN_DEVICE_FUNC
|
|
static float (max)() { return CUDART_MAX_NORMAL_F; }
|
|
EIGEN_DEVICE_FUNC
|
|
static float (min)() { return FLT_MIN; }
|
|
EIGEN_DEVICE_FUNC
|
|
static float infinity() { return CUDART_INF_F; }
|
|
EIGEN_DEVICE_FUNC
|
|
static float quiet_NaN() { return CUDART_NAN_F; }
|
|
};
|
|
template<> struct numeric_limits<double>
|
|
{
|
|
EIGEN_DEVICE_FUNC
|
|
static double epsilon() { return __DBL_EPSILON__; }
|
|
EIGEN_DEVICE_FUNC
|
|
static double (max)() { return DBL_MAX; }
|
|
EIGEN_DEVICE_FUNC
|
|
static double (min)() { return DBL_MIN; }
|
|
EIGEN_DEVICE_FUNC
|
|
static double infinity() { return CUDART_INF; }
|
|
EIGEN_DEVICE_FUNC
|
|
static double quiet_NaN() { return CUDART_NAN; }
|
|
};
|
|
template<> struct numeric_limits<int>
|
|
{
|
|
EIGEN_DEVICE_FUNC
|
|
static int epsilon() { return 0; }
|
|
EIGEN_DEVICE_FUNC
|
|
static int (max)() { return INT_MAX; }
|
|
EIGEN_DEVICE_FUNC
|
|
static int (min)() { return INT_MIN; }
|
|
};
|
|
template<> struct numeric_limits<unsigned int>
|
|
{
|
|
EIGEN_DEVICE_FUNC
|
|
static unsigned int epsilon() { return 0; }
|
|
EIGEN_DEVICE_FUNC
|
|
static unsigned int (max)() { return UINT_MAX; }
|
|
EIGEN_DEVICE_FUNC
|
|
static unsigned int (min)() { return 0; }
|
|
};
|
|
template<> struct numeric_limits<long>
|
|
{
|
|
EIGEN_DEVICE_FUNC
|
|
static long epsilon() { return 0; }
|
|
EIGEN_DEVICE_FUNC
|
|
static long (max)() { return LONG_MAX; }
|
|
EIGEN_DEVICE_FUNC
|
|
static long (min)() { return LONG_MIN; }
|
|
};
|
|
template<> struct numeric_limits<unsigned long>
|
|
{
|
|
EIGEN_DEVICE_FUNC
|
|
static unsigned long epsilon() { return 0; }
|
|
EIGEN_DEVICE_FUNC
|
|
static unsigned long (max)() { return ULONG_MAX; }
|
|
EIGEN_DEVICE_FUNC
|
|
static unsigned long (min)() { return 0; }
|
|
};
|
|
template<> struct numeric_limits<long long>
|
|
{
|
|
EIGEN_DEVICE_FUNC
|
|
static long long epsilon() { return 0; }
|
|
EIGEN_DEVICE_FUNC
|
|
static long long (max)() { return LLONG_MAX; }
|
|
EIGEN_DEVICE_FUNC
|
|
static long long (min)() { return LLONG_MIN; }
|
|
};
|
|
template<> struct numeric_limits<unsigned long long>
|
|
{
|
|
EIGEN_DEVICE_FUNC
|
|
static unsigned long long epsilon() { return 0; }
|
|
EIGEN_DEVICE_FUNC
|
|
static unsigned long long (max)() { return ULLONG_MAX; }
|
|
EIGEN_DEVICE_FUNC
|
|
static unsigned long long (min)() { return 0; }
|
|
};
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
/** \internal
|
|
* A base class do disable default copy ctor and copy assignement operator.
|
|
*/
|
|
class noncopyable
|
|
{
|
|
EIGEN_DEVICE_FUNC noncopyable(const noncopyable&);
|
|
EIGEN_DEVICE_FUNC const noncopyable& operator=(const noncopyable&);
|
|
protected:
|
|
EIGEN_DEVICE_FUNC noncopyable() {}
|
|
EIGEN_DEVICE_FUNC ~noncopyable() {}
|
|
};
|
|
|
|
/** \internal
|
|
* Provides access to the number of elements in the object of as a compile-time constant expression.
|
|
* It "returns" Eigen::Dynamic if the size cannot be resolved at compile-time (default).
|
|
*
|
|
* Similar to std::tuple_size, but more general.
|
|
*
|
|
* It currently supports:
|
|
* - any types T defining T::SizeAtCompileTime
|
|
* - plain C arrays as T[N]
|
|
* - std::array (c++11)
|
|
* - some internal types such as SingleRange and AllRange
|
|
*
|
|
* The second template parameter eases SFINAE-based specializations.
|
|
*/
|
|
template<typename T, typename EnableIf = void> struct array_size {
|
|
enum { value = Dynamic };
|
|
};
|
|
|
|
template<typename T> struct array_size<T,typename internal::enable_if<((T::SizeAtCompileTime&0)==0)>::type> {
|
|
enum { value = T::SizeAtCompileTime };
|
|
};
|
|
|
|
template<typename T, int N> struct array_size<const T (&)[N]> {
|
|
enum { value = N };
|
|
};
|
|
template<typename T, int N> struct array_size<T (&)[N]> {
|
|
enum { value = N };
|
|
};
|
|
|
|
#if EIGEN_HAS_CXX11
|
|
template<typename T, std::size_t N> struct array_size<const std::array<T,N> > {
|
|
enum { value = N };
|
|
};
|
|
template<typename T, std::size_t N> struct array_size<std::array<T,N> > {
|
|
enum { value = N };
|
|
};
|
|
#endif
|
|
|
|
/** \internal
|
|
* Analogue of the std::size free function.
|
|
* It returns the size of the container or view \a x of type \c T
|
|
*
|
|
* It currently supports:
|
|
* - any types T defining a member T::size() const
|
|
* - plain C arrays as T[N]
|
|
*
|
|
*/
|
|
template<typename T>
|
|
Index size(const T& x) { return x.size(); }
|
|
|
|
template<typename T,std::size_t N>
|
|
Index size(const T (&) [N]) { return N; }
|
|
|
|
/** \internal
|
|
* Convenient struct to get the result type of a unary or binary functor.
|
|
*
|
|
* It supports both the current STL mechanism (using the result_type member) as well as
|
|
* upcoming next STL generation (using a templated result member).
|
|
* If none of these members is provided, then the type of the first argument is returned. FIXME, that behavior is a pretty bad hack.
|
|
*/
|
|
#if EIGEN_HAS_STD_RESULT_OF
|
|
template<typename T> struct result_of {
|
|
typedef typename std::result_of<T>::type type1;
|
|
typedef typename remove_all<type1>::type type;
|
|
};
|
|
#else
|
|
template<typename T> struct result_of { };
|
|
|
|
struct has_none {int a[1];};
|
|
struct has_std_result_type {int a[2];};
|
|
struct has_tr1_result {int a[3];};
|
|
|
|
template<typename Func, typename ArgType, int SizeOf=sizeof(has_none)>
|
|
struct unary_result_of_select {typedef typename internal::remove_all<ArgType>::type type;};
|
|
|
|
template<typename Func, typename ArgType>
|
|
struct unary_result_of_select<Func, ArgType, sizeof(has_std_result_type)> {typedef typename Func::result_type type;};
|
|
|
|
template<typename Func, typename ArgType>
|
|
struct unary_result_of_select<Func, ArgType, sizeof(has_tr1_result)> {typedef typename Func::template result<Func(ArgType)>::type type;};
|
|
|
|
template<typename Func, typename ArgType>
|
|
struct result_of<Func(ArgType)> {
|
|
template<typename T>
|
|
static has_std_result_type testFunctor(T const *, typename T::result_type const * = 0);
|
|
template<typename T>
|
|
static has_tr1_result testFunctor(T const *, typename T::template result<T(ArgType)>::type const * = 0);
|
|
static has_none testFunctor(...);
|
|
|
|
// note that the following indirection is needed for gcc-3.3
|
|
enum {FunctorType = sizeof(testFunctor(static_cast<Func*>(0)))};
|
|
typedef typename unary_result_of_select<Func, ArgType, FunctorType>::type type;
|
|
};
|
|
|
|
template<typename Func, typename ArgType0, typename ArgType1, int SizeOf=sizeof(has_none)>
|
|
struct binary_result_of_select {typedef typename internal::remove_all<ArgType0>::type type;};
|
|
|
|
template<typename Func, typename ArgType0, typename ArgType1>
|
|
struct binary_result_of_select<Func, ArgType0, ArgType1, sizeof(has_std_result_type)>
|
|
{typedef typename Func::result_type type;};
|
|
|
|
template<typename Func, typename ArgType0, typename ArgType1>
|
|
struct binary_result_of_select<Func, ArgType0, ArgType1, sizeof(has_tr1_result)>
|
|
{typedef typename Func::template result<Func(ArgType0,ArgType1)>::type type;};
|
|
|
|
template<typename Func, typename ArgType0, typename ArgType1>
|
|
struct result_of<Func(ArgType0,ArgType1)> {
|
|
template<typename T>
|
|
static has_std_result_type testFunctor(T const *, typename T::result_type const * = 0);
|
|
template<typename T>
|
|
static has_tr1_result testFunctor(T const *, typename T::template result<T(ArgType0,ArgType1)>::type const * = 0);
|
|
static has_none testFunctor(...);
|
|
|
|
// note that the following indirection is needed for gcc-3.3
|
|
enum {FunctorType = sizeof(testFunctor(static_cast<Func*>(0)))};
|
|
typedef typename binary_result_of_select<Func, ArgType0, ArgType1, FunctorType>::type type;
|
|
};
|
|
|
|
template<typename Func, typename ArgType0, typename ArgType1, typename ArgType2, int SizeOf=sizeof(has_none)>
|
|
struct ternary_result_of_select {typedef typename internal::remove_all<ArgType0>::type type;};
|
|
|
|
template<typename Func, typename ArgType0, typename ArgType1, typename ArgType2>
|
|
struct ternary_result_of_select<Func, ArgType0, ArgType1, ArgType2, sizeof(has_std_result_type)>
|
|
{typedef typename Func::result_type type;};
|
|
|
|
template<typename Func, typename ArgType0, typename ArgType1, typename ArgType2>
|
|
struct ternary_result_of_select<Func, ArgType0, ArgType1, ArgType2, sizeof(has_tr1_result)>
|
|
{typedef typename Func::template result<Func(ArgType0,ArgType1,ArgType2)>::type type;};
|
|
|
|
template<typename Func, typename ArgType0, typename ArgType1, typename ArgType2>
|
|
struct result_of<Func(ArgType0,ArgType1,ArgType2)> {
|
|
template<typename T>
|
|
static has_std_result_type testFunctor(T const *, typename T::result_type const * = 0);
|
|
template<typename T>
|
|
static has_tr1_result testFunctor(T const *, typename T::template result<T(ArgType0,ArgType1,ArgType2)>::type const * = 0);
|
|
static has_none testFunctor(...);
|
|
|
|
// note that the following indirection is needed for gcc-3.3
|
|
enum {FunctorType = sizeof(testFunctor(static_cast<Func*>(0)))};
|
|
typedef typename ternary_result_of_select<Func, ArgType0, ArgType1, ArgType2, FunctorType>::type type;
|
|
};
|
|
#endif
|
|
|
|
struct meta_yes { char a[1]; };
|
|
struct meta_no { char a[2]; };
|
|
|
|
// Check whether T::ReturnType does exist
|
|
template <typename T>
|
|
struct has_ReturnType
|
|
{
|
|
template <typename C> static meta_yes testFunctor(C const *, typename C::ReturnType const * = 0);
|
|
template <typename C> static meta_no testFunctor(...);
|
|
|
|
enum { value = sizeof(testFunctor<T>(static_cast<T*>(0))) == sizeof(meta_yes) };
|
|
};
|
|
|
|
template<typename T> const T* return_ptr();
|
|
|
|
template <typename T, typename IndexType=Index>
|
|
struct has_nullary_operator
|
|
{
|
|
template <typename C> static meta_yes testFunctor(C const *,typename enable_if<(sizeof(return_ptr<C>()->operator()())>0)>::type * = 0);
|
|
static meta_no testFunctor(...);
|
|
|
|
enum { value = sizeof(testFunctor(static_cast<T*>(0))) == sizeof(meta_yes) };
|
|
};
|
|
|
|
template <typename T, typename IndexType=Index>
|
|
struct has_unary_operator
|
|
{
|
|
template <typename C> static meta_yes testFunctor(C const *,typename enable_if<(sizeof(return_ptr<C>()->operator()(IndexType(0)))>0)>::type * = 0);
|
|
static meta_no testFunctor(...);
|
|
|
|
enum { value = sizeof(testFunctor(static_cast<T*>(0))) == sizeof(meta_yes) };
|
|
};
|
|
|
|
template <typename T, typename IndexType=Index>
|
|
struct has_binary_operator
|
|
{
|
|
template <typename C> static meta_yes testFunctor(C const *,typename enable_if<(sizeof(return_ptr<C>()->operator()(IndexType(0),IndexType(0)))>0)>::type * = 0);
|
|
static meta_no testFunctor(...);
|
|
|
|
enum { value = sizeof(testFunctor(static_cast<T*>(0))) == sizeof(meta_yes) };
|
|
};
|
|
|
|
/** \internal In short, it computes int(sqrt(\a Y)) with \a Y an integer.
|
|
* Usage example: \code meta_sqrt<1023>::ret \endcode
|
|
*/
|
|
template<int Y,
|
|
int InfX = 0,
|
|
int SupX = ((Y==1) ? 1 : Y/2),
|
|
bool Done = ((SupX-InfX)<=1 ? true : ((SupX*SupX <= Y) && ((SupX+1)*(SupX+1) > Y))) >
|
|
// use ?: instead of || just to shut up a stupid gcc 4.3 warning
|
|
class meta_sqrt
|
|
{
|
|
enum {
|
|
MidX = (InfX+SupX)/2,
|
|
TakeInf = MidX*MidX > Y ? 1 : 0,
|
|
NewInf = int(TakeInf) ? InfX : int(MidX),
|
|
NewSup = int(TakeInf) ? int(MidX) : SupX
|
|
};
|
|
public:
|
|
enum { ret = meta_sqrt<Y,NewInf,NewSup>::ret };
|
|
};
|
|
|
|
template<int Y, int InfX, int SupX>
|
|
class meta_sqrt<Y, InfX, SupX, true> { public: enum { ret = (SupX*SupX <= Y) ? SupX : InfX }; };
|
|
|
|
|
|
/** \internal Computes the least common multiple of two positive integer A and B
|
|
* at compile-time. It implements a naive algorithm testing all multiples of A.
|
|
* It thus works better if A>=B.
|
|
*/
|
|
template<int A, int B, int K=1, bool Done = ((A*K)%B)==0>
|
|
struct meta_least_common_multiple
|
|
{
|
|
enum { ret = meta_least_common_multiple<A,B,K+1>::ret };
|
|
};
|
|
template<int A, int B, int K>
|
|
struct meta_least_common_multiple<A,B,K,true>
|
|
{
|
|
enum { ret = A*K };
|
|
};
|
|
|
|
/** \internal determines whether the product of two numeric types is allowed and what the return type is */
|
|
template<typename T, typename U> struct scalar_product_traits
|
|
{
|
|
enum { Defined = 0 };
|
|
};
|
|
|
|
// FIXME quick workaround around current limitation of result_of
|
|
// template<typename Scalar, typename ArgType0, typename ArgType1>
|
|
// struct result_of<scalar_product_op<Scalar>(ArgType0,ArgType1)> {
|
|
// typedef typename scalar_product_traits<typename remove_all<ArgType0>::type, typename remove_all<ArgType1>::type>::ReturnType type;
|
|
// };
|
|
|
|
} // end namespace internal
|
|
|
|
namespace numext {
|
|
|
|
#if defined(__CUDA_ARCH__)
|
|
template<typename T> EIGEN_DEVICE_FUNC void swap(T &a, T &b) { T tmp = b; b = a; a = tmp; }
|
|
#else
|
|
template<typename T> EIGEN_STRONG_INLINE void swap(T &a, T &b) { std::swap(a,b); }
|
|
#endif
|
|
|
|
#if defined(__CUDA_ARCH__)
|
|
using internal::device::numeric_limits;
|
|
#else
|
|
using std::numeric_limits;
|
|
#endif
|
|
|
|
// Integer division with rounding up.
|
|
// T is assumed to be an integer type with a>=0, and b>0
|
|
template<typename T>
|
|
T div_ceil(const T &a, const T &b)
|
|
{
|
|
return (a+b-1) / b;
|
|
}
|
|
|
|
} // end namespace numext
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_META_H
|