mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-23 01:59:38 +08:00

* Use them to write an unrolled path in echelon.cpp, as an experiment before I do this LU module. * For floating-point types, make ei_random() use an amplitude of 1.
204 lines
8.4 KiB
C++
204 lines
8.4 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra. Eigen itself is part of the KDE project.
|
|
//
|
|
// Copyright (C) 2006-2008 Benoit Jacob <jacob@math.jussieu.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#ifndef EIGEN_MATHFUNCTIONS_H
|
|
#define EIGEN_MATHFUNCTIONS_H
|
|
|
|
template<typename T> inline typename NumTraits<T>::Real precision();
|
|
template<typename T> inline T ei_random(T a, T b);
|
|
template<typename T> inline T ei_random();
|
|
template<typename T> inline T ei_random_amplitude()
|
|
{
|
|
if(NumTraits<T>::HasFloatingPoint) return static_cast<T>(1);
|
|
else return static_cast<T>(10);
|
|
}
|
|
|
|
template<> inline int precision<int>() { return 0; }
|
|
inline int ei_real(int x) { return x; }
|
|
inline int ei_imag(int) { return 0; }
|
|
inline int ei_conj(int x) { return x; }
|
|
inline int ei_abs(int x) { return abs(x); }
|
|
inline int ei_abs2(int x) { return x*x; }
|
|
inline int ei_sqrt(int) { ei_assert(false); return 0; }
|
|
inline int ei_exp(int) { ei_assert(false); return 0; }
|
|
inline int ei_log(int) { ei_assert(false); return 0; }
|
|
inline int ei_sin(int) { ei_assert(false); return 0; }
|
|
inline int ei_cos(int) { ei_assert(false); return 0; }
|
|
// FIXME naive GCC version test, e.g. 5.0 would not pass
|
|
#if (defined __ICC) || (defined __GNUC__ && (__GNUC__<4 || __GNUC_MINOR__<3))
|
|
inline int ei_pow(int x, int y) { return int(std::pow(double(x), y)); }
|
|
#else
|
|
inline int ei_pow(int x, int y) { return std::pow(x, y); }
|
|
#endif
|
|
|
|
template<> inline int ei_random(int a, int b)
|
|
{
|
|
// We can't just do rand()%n as only the high-order bits are really random
|
|
return a + static_cast<int>((b-a+1) * (rand() / (RAND_MAX + 1.0)));
|
|
}
|
|
template<> inline int ei_random()
|
|
{
|
|
return ei_random<int>(-ei_random_amplitude<int>(), ei_random_amplitude<int>());
|
|
}
|
|
inline bool ei_isMuchSmallerThan(int a, int, int = precision<int>())
|
|
{
|
|
return a == 0;
|
|
}
|
|
inline bool ei_isApprox(int a, int b, int = precision<int>())
|
|
{
|
|
return a == b;
|
|
}
|
|
inline bool ei_isApproxOrLessThan(int a, int b, int = precision<int>())
|
|
{
|
|
return a <= b;
|
|
}
|
|
|
|
template<> inline float precision<float>() { return 1e-5f; }
|
|
inline float ei_real(float x) { return x; }
|
|
inline float ei_imag(float) { return 0.f; }
|
|
inline float ei_conj(float x) { return x; }
|
|
inline float ei_abs(float x) { return std::abs(x); }
|
|
inline float ei_abs2(float x) { return x*x; }
|
|
inline float ei_sqrt(float x) { return std::sqrt(x); }
|
|
inline float ei_exp(float x) { return std::exp(x); }
|
|
inline float ei_log(float x) { return std::log(x); }
|
|
inline float ei_sin(float x) { return std::sin(x); }
|
|
inline float ei_cos(float x) { return std::cos(x); }
|
|
inline float ei_pow(float x, float y) { return std::pow(x, y); }
|
|
|
|
template<> inline float ei_random(float a, float b)
|
|
{
|
|
return a + (b-a) * std::rand() / RAND_MAX;
|
|
}
|
|
template<> inline float ei_random()
|
|
{
|
|
return ei_random<float>(-ei_random_amplitude<float>(), ei_random_amplitude<float>());
|
|
}
|
|
inline bool ei_isMuchSmallerThan(float a, float b, float prec = precision<float>())
|
|
{
|
|
return ei_abs(a) <= ei_abs(b) * prec;
|
|
}
|
|
inline bool ei_isApprox(float a, float b, float prec = precision<float>())
|
|
{
|
|
return ei_abs(a - b) <= std::min(ei_abs(a), ei_abs(b)) * prec;
|
|
}
|
|
inline bool ei_isApproxOrLessThan(float a, float b, float prec = precision<float>())
|
|
{
|
|
return a <= b || ei_isApprox(a, b, prec);
|
|
}
|
|
|
|
template<> inline double precision<double>() { return 1e-11; }
|
|
inline double ei_real(double x) { return x; }
|
|
inline double ei_imag(double) { return 0.; }
|
|
inline double ei_conj(double x) { return x; }
|
|
inline double ei_abs(double x) { return std::abs(x); }
|
|
inline double ei_abs2(double x) { return x*x; }
|
|
inline double ei_sqrt(double x) { return std::sqrt(x); }
|
|
inline double ei_exp(double x) { return std::exp(x); }
|
|
inline double ei_log(double x) { return std::log(x); }
|
|
inline double ei_sin(double x) { return std::sin(x); }
|
|
inline double ei_cos(double x) { return std::cos(x); }
|
|
inline double ei_pow(double x, double y) { return std::pow(x, y); }
|
|
|
|
template<> inline double ei_random(double a, double b)
|
|
{
|
|
return a + (b-a) * std::rand() / RAND_MAX;
|
|
}
|
|
template<> inline double ei_random()
|
|
{
|
|
return ei_random<double>(-ei_random_amplitude<double>(), ei_random_amplitude<double>());
|
|
}
|
|
inline bool ei_isMuchSmallerThan(double a, double b, double prec = precision<double>())
|
|
{
|
|
return ei_abs(a) <= ei_abs(b) * prec;
|
|
}
|
|
inline bool ei_isApprox(double a, double b, double prec = precision<double>())
|
|
{
|
|
return ei_abs(a - b) <= std::min(ei_abs(a), ei_abs(b)) * prec;
|
|
}
|
|
inline bool ei_isApproxOrLessThan(double a, double b, double prec = precision<double>())
|
|
{
|
|
return a <= b || ei_isApprox(a, b, prec);
|
|
}
|
|
|
|
template<> inline float precision<std::complex<float> >() { return precision<float>(); }
|
|
inline float ei_real(const std::complex<float>& x) { return std::real(x); }
|
|
inline float ei_imag(const std::complex<float>& x) { return std::imag(x); }
|
|
inline std::complex<float> ei_conj(const std::complex<float>& x) { return std::conj(x); }
|
|
inline float ei_abs(const std::complex<float>& x) { return std::abs(x); }
|
|
inline float ei_abs2(const std::complex<float>& x) { return std::norm(x); }
|
|
inline std::complex<float> ei_exp(std::complex<float> x) { return std::exp(x); }
|
|
inline std::complex<float> ei_sin(std::complex<float> x) { return std::sin(x); }
|
|
inline std::complex<float> ei_cos(std::complex<float> x) { return std::cos(x); }
|
|
|
|
template<> inline std::complex<float> ei_random()
|
|
{
|
|
return std::complex<float>(ei_random<float>(), ei_random<float>());
|
|
}
|
|
inline bool ei_isMuchSmallerThan(const std::complex<float>& a, const std::complex<float>& b, float prec = precision<float>())
|
|
{
|
|
return ei_abs2(a) <= ei_abs2(b) * prec * prec;
|
|
}
|
|
inline bool ei_isMuchSmallerThan(const std::complex<float>& a, float b, float prec = precision<float>())
|
|
{
|
|
return ei_abs2(a) <= ei_abs2(b) * prec * prec;
|
|
}
|
|
inline bool ei_isApprox(const std::complex<float>& a, const std::complex<float>& b, float prec = precision<float>())
|
|
{
|
|
return ei_isApprox(ei_real(a), ei_real(b), prec)
|
|
&& ei_isApprox(ei_imag(a), ei_imag(b), prec);
|
|
}
|
|
// ei_isApproxOrLessThan wouldn't make sense for complex numbers
|
|
|
|
template<> inline double precision<std::complex<double> >() { return precision<double>(); }
|
|
inline double ei_real(const std::complex<double>& x) { return std::real(x); }
|
|
inline double ei_imag(const std::complex<double>& x) { return std::imag(x); }
|
|
inline std::complex<double> ei_conj(const std::complex<double>& x) { return std::conj(x); }
|
|
inline double ei_abs(const std::complex<double>& x) { return std::abs(x); }
|
|
inline double ei_abs2(const std::complex<double>& x) { return std::norm(x); }
|
|
inline std::complex<double> ei_exp(std::complex<double> x) { return std::exp(x); }
|
|
inline std::complex<double> ei_sin(std::complex<double> x) { return std::sin(x); }
|
|
inline std::complex<double> ei_cos(std::complex<double> x) { return std::cos(x); }
|
|
|
|
template<> inline std::complex<double> ei_random()
|
|
{
|
|
return std::complex<double>(ei_random<double>(), ei_random<double>());
|
|
}
|
|
inline bool ei_isMuchSmallerThan(const std::complex<double>& a, const std::complex<double>& b, double prec = precision<double>())
|
|
{
|
|
return ei_abs2(a) <= ei_abs2(b) * prec * prec;
|
|
}
|
|
inline bool ei_isMuchSmallerThan(const std::complex<double>& a, double b, double prec = precision<double>())
|
|
{
|
|
return ei_abs2(a) <= ei_abs2(b) * prec * prec;
|
|
}
|
|
inline bool ei_isApprox(const std::complex<double>& a, const std::complex<double>& b, double prec = precision<double>())
|
|
{
|
|
return ei_isApprox(ei_real(a), ei_real(b), prec)
|
|
&& ei_isApprox(ei_imag(a), ei_imag(b), prec);
|
|
}
|
|
// ei_isApproxOrLessThan wouldn't make sense for complex numbers
|
|
|
|
#endif // EIGEN_MATHFUNCTIONS_H
|