mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-05-13 16:28:06 +08:00

Renamed ReturnByValue::ReturnMatrixType ReturnByValue::ReturnType (again, Array != Matrix).
342 lines
13 KiB
C++
342 lines
13 KiB
C++
// // This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
|
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#ifndef EIGEN_XPRHELPER_H
|
|
#define EIGEN_XPRHELPER_H
|
|
|
|
// just a workaround because GCC seems to not really like empty structs
|
|
#ifdef __GNUG__
|
|
#define EIGEN_EMPTY_STRUCT_CTOR(X) \
|
|
EIGEN_STRONG_INLINE X() {} \
|
|
EIGEN_STRONG_INLINE X(const X&) {}
|
|
#else
|
|
#define EIGEN_EMPTY_STRUCT_CTOR(X)
|
|
#endif
|
|
|
|
//classes inheriting ei_no_assignment_operator don't generate a default operator=.
|
|
class ei_no_assignment_operator
|
|
{
|
|
private:
|
|
ei_no_assignment_operator& operator=(const ei_no_assignment_operator&);
|
|
};
|
|
|
|
/** \internal If the template parameter Value is Dynamic, this class is just a wrapper around an int variable that
|
|
* can be accessed using value() and setValue().
|
|
* Otherwise, this class is an empty structure and value() just returns the template parameter Value.
|
|
*/
|
|
template<int Value> class ei_int_if_dynamic
|
|
{
|
|
public:
|
|
EIGEN_EMPTY_STRUCT_CTOR(ei_int_if_dynamic)
|
|
explicit ei_int_if_dynamic(int) {}
|
|
static int value() { return Value; }
|
|
void setValue(int) {}
|
|
};
|
|
|
|
template<> class ei_int_if_dynamic<Dynamic>
|
|
{
|
|
int m_value;
|
|
ei_int_if_dynamic() {}
|
|
public:
|
|
explicit ei_int_if_dynamic(int value) : m_value(value) {}
|
|
int value() const { return m_value; }
|
|
void setValue(int value) { m_value = value; }
|
|
};
|
|
|
|
template<typename T> struct ei_functor_traits
|
|
{
|
|
enum
|
|
{
|
|
Cost = 10,
|
|
PacketAccess = false
|
|
};
|
|
};
|
|
|
|
template<typename T> struct ei_packet_traits;
|
|
|
|
template<typename T> struct ei_unpacket_traits
|
|
{
|
|
typedef T type;
|
|
enum {size=1};
|
|
};
|
|
|
|
template<typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols>
|
|
class ei_compute_matrix_flags
|
|
{
|
|
enum {
|
|
row_major_bit = Options&RowMajor ? RowMajorBit : 0,
|
|
inner_max_size = MaxCols==1 ? MaxRows
|
|
: MaxRows==1 ? MaxCols
|
|
: row_major_bit ? MaxCols : MaxRows,
|
|
is_big = inner_max_size == Dynamic,
|
|
is_packet_size_multiple = MaxRows==Dynamic || MaxCols==Dynamic || ((MaxCols*MaxRows) % ei_packet_traits<Scalar>::size) == 0,
|
|
aligned_bit = (((Options&DontAlign)==0) && (is_big || is_packet_size_multiple)) ? AlignedBit : 0,
|
|
packet_access_bit = ei_packet_traits<Scalar>::size > 1 && aligned_bit ? PacketAccessBit : 0
|
|
};
|
|
|
|
public:
|
|
enum { ret = LinearAccessBit | DirectAccessBit | NestByRefBit | packet_access_bit | row_major_bit | aligned_bit };
|
|
};
|
|
|
|
template<int _Rows, int _Cols> struct ei_size_at_compile_time
|
|
{
|
|
enum { ret = (_Rows==Dynamic || _Cols==Dynamic) ? Dynamic : _Rows * _Cols };
|
|
};
|
|
|
|
/* ei_plain_matrix_type : the difference from ei_eval is that ei_plain_matrix_type is always a plain matrix type,
|
|
* whereas ei_eval is a const reference in the case of a matrix
|
|
*/
|
|
|
|
template<typename T, typename StorageType = typename ei_traits<T>::StorageType> struct ei_plain_matrix_type;
|
|
template<typename T, typename BaseClassType> struct ei_plain_matrix_type_dense;
|
|
template<typename T> struct ei_plain_matrix_type<T,Dense>
|
|
{
|
|
typedef typename ei_plain_matrix_type_dense<T,typename ei_traits<T>::DenseStorageType>::type type;
|
|
};
|
|
|
|
template<typename T> struct ei_plain_matrix_type_dense<T,DenseStorageMatrix>
|
|
{
|
|
typedef Matrix<typename ei_traits<T>::Scalar,
|
|
ei_traits<T>::RowsAtCompileTime,
|
|
ei_traits<T>::ColsAtCompileTime,
|
|
AutoAlign | (ei_traits<T>::Flags&RowMajorBit ? RowMajor : ColMajor),
|
|
ei_traits<T>::MaxRowsAtCompileTime,
|
|
ei_traits<T>::MaxColsAtCompileTime
|
|
> type;
|
|
};
|
|
|
|
template<typename T> struct ei_plain_matrix_type_dense<T,DenseStorageArray>
|
|
{
|
|
typedef Array<typename ei_traits<T>::Scalar,
|
|
ei_traits<T>::RowsAtCompileTime,
|
|
ei_traits<T>::ColsAtCompileTime,
|
|
AutoAlign | (ei_traits<T>::Flags&RowMajorBit ? RowMajor : ColMajor),
|
|
ei_traits<T>::MaxRowsAtCompileTime,
|
|
ei_traits<T>::MaxColsAtCompileTime
|
|
> type;
|
|
};
|
|
|
|
/* ei_eval : the return type of eval(). For matrices, this is just a const reference
|
|
* in order to avoid a useless copy
|
|
*/
|
|
|
|
template<typename T, typename StorageType = typename ei_traits<T>::StorageType> struct ei_eval;
|
|
|
|
template<typename T> struct ei_eval<T,Dense>
|
|
{
|
|
typedef typename ei_plain_matrix_type<T>::type type;
|
|
// typedef typename T::PlainObject type;
|
|
// typedef T::Matrix<typename ei_traits<T>::Scalar,
|
|
// ei_traits<T>::RowsAtCompileTime,
|
|
// ei_traits<T>::ColsAtCompileTime,
|
|
// AutoAlign | (ei_traits<T>::Flags&RowMajorBit ? RowMajor : ColMajor),
|
|
// ei_traits<T>::MaxRowsAtCompileTime,
|
|
// ei_traits<T>::MaxColsAtCompileTime
|
|
// > type;
|
|
};
|
|
|
|
// for matrices, no need to evaluate, just use a const reference to avoid a useless copy
|
|
template<typename _Scalar, int _Rows, int _Cols, int _StorageOrder, int _MaxRows, int _MaxCols>
|
|
struct ei_eval<Matrix<_Scalar, _Rows, _Cols, _StorageOrder, _MaxRows, _MaxCols>, Dense>
|
|
{
|
|
typedef const Matrix<_Scalar, _Rows, _Cols, _StorageOrder, _MaxRows, _MaxCols>& type;
|
|
};
|
|
|
|
template<typename _Scalar, int _Rows, int _Cols, int _StorageOrder, int _MaxRows, int _MaxCols>
|
|
struct ei_eval<Array<_Scalar, _Rows, _Cols, _StorageOrder, _MaxRows, _MaxCols>, Dense>
|
|
{
|
|
typedef const Array<_Scalar, _Rows, _Cols, _StorageOrder, _MaxRows, _MaxCols>& type;
|
|
};
|
|
|
|
|
|
|
|
/* ei_plain_matrix_type_column_major : same as ei_plain_matrix_type but guaranteed to be column-major
|
|
*/
|
|
template<typename T> struct ei_plain_matrix_type_column_major
|
|
{
|
|
typedef Matrix<typename ei_traits<T>::Scalar,
|
|
ei_traits<T>::RowsAtCompileTime,
|
|
ei_traits<T>::ColsAtCompileTime,
|
|
AutoAlign | ColMajor,
|
|
ei_traits<T>::MaxRowsAtCompileTime,
|
|
ei_traits<T>::MaxColsAtCompileTime
|
|
> type;
|
|
};
|
|
|
|
/* ei_plain_matrix_type_row_major : same as ei_plain_matrix_type but guaranteed to be row-major
|
|
*/
|
|
template<typename T> struct ei_plain_matrix_type_row_major
|
|
{
|
|
typedef Matrix<typename ei_traits<T>::Scalar,
|
|
ei_traits<T>::RowsAtCompileTime,
|
|
ei_traits<T>::ColsAtCompileTime,
|
|
AutoAlign | RowMajor,
|
|
ei_traits<T>::MaxRowsAtCompileTime,
|
|
ei_traits<T>::MaxColsAtCompileTime
|
|
> type;
|
|
};
|
|
|
|
// we should be able to get rid of this one too
|
|
template<typename T> struct ei_must_nest_by_value { enum { ret = false }; };
|
|
|
|
template<class T>
|
|
struct ei_is_reference
|
|
{
|
|
#ifndef NDEBUG
|
|
static void check() { std::cout << typeid(T).name() << std::endl; }
|
|
#else
|
|
static void check() {}
|
|
#endif
|
|
enum { ret = false };
|
|
};
|
|
|
|
template<class T>
|
|
struct ei_is_reference<T&>
|
|
{
|
|
#ifndef NDEBUG
|
|
static void check() { std::cout << typeid(T).name() << "&" << std::endl; }
|
|
#else
|
|
static void check() {}
|
|
#endif
|
|
enum { ret = true };
|
|
};
|
|
|
|
/**
|
|
* The reference selector for template expressions. The idea is that we don't
|
|
* need to use references for expressions since they are light weight proxy
|
|
* objects which should generate no copying overhead.
|
|
**/
|
|
template <typename T>
|
|
struct ei_ref_selector
|
|
{
|
|
typedef typename ei_meta_if<
|
|
bool(ei_traits<T>::Flags & NestByRefBit),
|
|
T const&,
|
|
T
|
|
>::ret type;
|
|
};
|
|
|
|
/** \internal Determines how a given expression should be nested into another one.
|
|
* For example, when you do a * (b+c), Eigen will determine how the expression b+c should be
|
|
* nested into the bigger product expression. The choice is between nesting the expression b+c as-is, or
|
|
* evaluating that expression b+c into a temporary variable d, and nest d so that the resulting expression is
|
|
* a*d. Evaluating can be beneficial for example if every coefficient access in the resulting expression causes
|
|
* many coefficient accesses in the nested expressions -- as is the case with matrix product for example.
|
|
*
|
|
* \param T the type of the expression being nested
|
|
* \param n the number of coefficient accesses in the nested expression for each coefficient access in the bigger expression.
|
|
*
|
|
* Example. Suppose that a, b, and c are of type Matrix3d. The user forms the expression a*(b+c).
|
|
* b+c is an expression "sum of matrices", which we will denote by S. In order to determine how to nest it,
|
|
* the Product expression uses: ei_nested<S, 3>::ret, which turns out to be Matrix3d because the internal logic of
|
|
* ei_nested determined that in this case it was better to evaluate the expression b+c into a temporary. On the other hand,
|
|
* since a is of type Matrix3d, the Product expression nests it as ei_nested<Matrix3d, 3>::ret, which turns out to be
|
|
* const Matrix3d&, because the internal logic of ei_nested determined that since a was already a matrix, there was no point
|
|
* in copying it into another matrix.
|
|
*/
|
|
template<typename T, int n=1, typename PlainObject = typename ei_eval<T>::type> struct ei_nested
|
|
{
|
|
enum {
|
|
CostEval = (n+1) * int(NumTraits<typename ei_traits<T>::Scalar>::ReadCost),
|
|
CostNoEval = (n-1) * int(ei_traits<T>::CoeffReadCost)
|
|
};
|
|
|
|
typedef typename ei_meta_if<
|
|
( int(ei_traits<T>::Flags) & EvalBeforeNestingBit ) ||
|
|
( int(CostEval) <= int(CostNoEval) ),
|
|
PlainObject,
|
|
typename ei_ref_selector<T>::type
|
|
>::ret type;
|
|
};
|
|
|
|
template<unsigned int Flags> struct ei_are_flags_consistent
|
|
{
|
|
enum { ret = true };
|
|
};
|
|
|
|
/** \internal Helper base class to add a scalar multiple operator
|
|
* overloads for complex types */
|
|
template<typename Derived,typename Scalar,typename OtherScalar,
|
|
bool EnableIt = !ei_is_same_type<Scalar,OtherScalar>::ret >
|
|
struct ei_special_scalar_op_base : public EigenBase<Derived>
|
|
{
|
|
// dummy operator* so that the
|
|
// "using ei_special_scalar_op_base::operator*" compiles
|
|
void operator*() const;
|
|
};
|
|
|
|
template<typename Derived,typename Scalar,typename OtherScalar>
|
|
struct ei_special_scalar_op_base<Derived,Scalar,OtherScalar,true> : public EigenBase<Derived>
|
|
{
|
|
const CwiseUnaryOp<ei_scalar_multiple2_op<Scalar,OtherScalar>, Derived>
|
|
operator*(const OtherScalar& scalar) const
|
|
{
|
|
return CwiseUnaryOp<ei_scalar_multiple2_op<Scalar,OtherScalar>, Derived>
|
|
(*static_cast<const Derived*>(this), ei_scalar_multiple2_op<Scalar,OtherScalar>(scalar));
|
|
}
|
|
|
|
inline friend const CwiseUnaryOp<ei_scalar_multiple2_op<Scalar,OtherScalar>, Derived>
|
|
operator*(const OtherScalar& scalar, const Derived& matrix)
|
|
{ return static_cast<const ei_special_scalar_op_base&>(matrix).operator*(scalar); }
|
|
};
|
|
|
|
/** \internal Gives the type of a sub-matrix or sub-vector of a matrix of type \a ExpressionType and size \a Size
|
|
* TODO: could be a good idea to define a big ReturnType struct ??
|
|
*/
|
|
template<typename ExpressionType, int RowsOrSize=Dynamic, int Cols=Dynamic> struct BlockReturnType {
|
|
typedef Block<ExpressionType, RowsOrSize, Cols> Type;
|
|
};
|
|
|
|
template<typename ExpressionType> struct HNormalizedReturnType {
|
|
|
|
enum {
|
|
SizeAtCompileTime = ExpressionType::SizeAtCompileTime,
|
|
SizeMinusOne = SizeAtCompileTime==Dynamic ? Dynamic : SizeAtCompileTime-1
|
|
};
|
|
typedef Block<ExpressionType,
|
|
ei_traits<ExpressionType>::ColsAtCompileTime==1 ? SizeMinusOne : 1,
|
|
ei_traits<ExpressionType>::ColsAtCompileTime==1 ? 1 : SizeMinusOne> StartMinusOne;
|
|
typedef CwiseUnaryOp<ei_scalar_quotient1_op<typename ei_traits<ExpressionType>::Scalar>,
|
|
StartMinusOne > Type;
|
|
};
|
|
|
|
template<typename XprType, typename CastType> struct ei_cast_return_type
|
|
{
|
|
typedef typename XprType::Scalar CurrentScalarType;
|
|
typedef typename ei_cleantype<CastType>::type _CastType;
|
|
typedef typename _CastType::Scalar NewScalarType;
|
|
typedef typename ei_meta_if<ei_is_same_type<CurrentScalarType,NewScalarType>::ret,
|
|
const XprType&,CastType>::ret type;
|
|
};
|
|
|
|
template <typename A, typename B> struct ei_promote_storage_type;
|
|
|
|
template <typename A> struct ei_promote_storage_type<A,A>
|
|
{
|
|
typedef A ret;
|
|
};
|
|
|
|
#endif // EIGEN_XPRHELPER_H
|