mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-07-21 12:24:25 +08:00
104 lines
4.1 KiB
C++
104 lines
4.1 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_COMPLEX_CUDA_H
|
|
#define EIGEN_COMPLEX_CUDA_H
|
|
|
|
// clang-format off
|
|
|
|
namespace Eigen {
|
|
|
|
namespace internal {
|
|
|
|
#if defined(__CUDACC__) && defined(EIGEN_USE_GPU)
|
|
|
|
// Many std::complex methods such as operator+, operator-, operator* and
|
|
// operator/ are not constexpr. Due to this, clang does not treat them as device
|
|
// functions and thus Eigen functors making use of these operators fail to
|
|
// compile. Here, we manually specialize these functors for complex types when
|
|
// building for CUDA to avoid non-constexpr methods.
|
|
|
|
// Sum
|
|
template<typename T> struct scalar_sum_op<const std::complex<T>, const std::complex<T> > : binary_op_base<const std::complex<T>, const std::complex<T> > {
|
|
typedef typename std::complex<T> result_type;
|
|
|
|
EIGEN_EMPTY_STRUCT_CTOR(scalar_sum_op)
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::complex<T> operator() (const std::complex<T>& a, const std::complex<T>& b) const {
|
|
return std::complex<T>(numext::real(a) + numext::real(b),
|
|
numext::imag(a) + numext::imag(b));
|
|
}
|
|
};
|
|
|
|
template<typename T> struct scalar_sum_op<std::complex<T>, std::complex<T> > : scalar_sum_op<const std::complex<T>, const std::complex<T> > {};
|
|
|
|
|
|
// Difference
|
|
template<typename T> struct scalar_difference_op<const std::complex<T>, const std::complex<T> > : binary_op_base<const std::complex<T>, const std::complex<T> > {
|
|
typedef typename std::complex<T> result_type;
|
|
|
|
EIGEN_EMPTY_STRUCT_CTOR(scalar_difference_op)
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::complex<T> operator() (const std::complex<T>& a, const std::complex<T>& b) const {
|
|
return std::complex<T>(numext::real(a) - numext::real(b),
|
|
numext::imag(a) - numext::imag(b));
|
|
}
|
|
};
|
|
|
|
template<typename T> struct scalar_difference_op<std::complex<T>, std::complex<T> > : scalar_difference_op<const std::complex<T>, const std::complex<T> > {};
|
|
|
|
|
|
// Product
|
|
template<typename T> struct scalar_product_op<const std::complex<T>, const std::complex<T> > : binary_op_base<const std::complex<T>, const std::complex<T> > {
|
|
enum {
|
|
Vectorizable = packet_traits<std::complex<T>>::HasMul
|
|
};
|
|
typedef typename std::complex<T> result_type;
|
|
|
|
EIGEN_EMPTY_STRUCT_CTOR(scalar_product_op)
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::complex<T> operator() (const std::complex<T>& a, const std::complex<T>& b) const {
|
|
const T a_real = numext::real(a);
|
|
const T a_imag = numext::imag(a);
|
|
const T b_real = numext::real(b);
|
|
const T b_imag = numext::imag(b);
|
|
return std::complex<T>(a_real * b_real - a_imag * b_imag,
|
|
a_real * b_imag + a_imag * b_real);
|
|
}
|
|
};
|
|
|
|
template<typename T> struct scalar_product_op<std::complex<T>, std::complex<T> > : scalar_product_op<const std::complex<T>, const std::complex<T> > {};
|
|
|
|
|
|
// Quotient
|
|
template<typename T> struct scalar_quotient_op<const std::complex<T>, const std::complex<T> > : binary_op_base<const std::complex<T>, const std::complex<T> > {
|
|
enum {
|
|
Vectorizable = packet_traits<std::complex<T>>::HasDiv
|
|
};
|
|
typedef typename std::complex<T> result_type;
|
|
|
|
EIGEN_EMPTY_STRUCT_CTOR(scalar_quotient_op)
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::complex<T> operator() (const std::complex<T>& a, const std::complex<T>& b) const {
|
|
const T a_real = numext::real(a);
|
|
const T a_imag = numext::imag(a);
|
|
const T b_real = numext::real(b);
|
|
const T b_imag = numext::imag(b);
|
|
const T norm = T(1) / (b_real * b_real + b_imag * b_imag);
|
|
return std::complex<T>((a_real * b_real + a_imag * b_imag) * norm,
|
|
(a_imag * b_real - a_real * b_imag) * norm);
|
|
}
|
|
};
|
|
|
|
template<typename T> struct scalar_quotient_op<std::complex<T>, std::complex<T> > : scalar_quotient_op<const std::complex<T>, const std::complex<T> > {};
|
|
|
|
#endif
|
|
|
|
} // end namespace internal
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_COMPLEX_CUDA_H
|