eigen/Eigen/src/Core/util/XprHelper.h

325 lines
13 KiB
C++

// // This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_XPRHELPER_H
#define EIGEN_XPRHELPER_H
// just a workaround because GCC seems to not really like empty structs
#ifdef __GNUG__
struct ei_empty_struct{char _ei_dummy_;};
#define EIGEN_EMPTY_STRUCT : Eigen::ei_empty_struct
#else
#define EIGEN_EMPTY_STRUCT
#endif
//classes inheriting ei_no_assignment_operator don't generate a default operator=.
class ei_no_assignment_operator
{
private:
ei_no_assignment_operator& operator=(const ei_no_assignment_operator&);
};
/** \internal If the template parameter Value is Dynamic, this class is just a wrapper around an int variable that
* can be accessed using value() and setValue().
* Otherwise, this class is an empty structure and value() just returns the template parameter Value.
*/
template<int Value> class ei_int_if_dynamic EIGEN_EMPTY_STRUCT
{
public:
ei_int_if_dynamic() {}
explicit ei_int_if_dynamic(int) {}
static int value() { return Value; }
void setValue(int) {}
};
template<> class ei_int_if_dynamic<Dynamic>
{
int m_value;
ei_int_if_dynamic() {}
public:
explicit ei_int_if_dynamic(int value) : m_value(value) {}
int value() const { return m_value; }
void setValue(int value) { m_value = value; }
};
template<typename T> struct ei_functor_traits
{
enum
{
Cost = 10,
PacketAccess = false
};
};
template<typename T> struct ei_packet_traits;
template<typename T> struct ei_unpacket_traits
{
typedef T type;
enum {size=1};
};
template<typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols>
class ei_compute_matrix_flags
{
enum {
row_major_bit = Options&RowMajor ? RowMajorBit : 0,
inner_max_size = MaxCols==1 ? MaxRows
: MaxRows==1 ? MaxCols
: row_major_bit ? MaxCols : MaxRows,
is_big = inner_max_size == Dynamic,
is_packet_size_multiple = MaxRows==Dynamic || MaxCols==Dynamic || ((MaxCols*MaxRows) % ei_packet_traits<Scalar>::size) == 0,
aligned_bit = (((Options&DontAlign)==0) && (is_big || is_packet_size_multiple)) ? AlignedBit : 0,
packet_access_bit = ei_packet_traits<Scalar>::size > 1 && aligned_bit ? PacketAccessBit : 0
};
public:
enum { ret = LinearAccessBit | DirectAccessBit | packet_access_bit | row_major_bit | aligned_bit };
};
template<int _Rows, int _Cols> struct ei_size_at_compile_time
{
enum { ret = (_Rows==Dynamic || _Cols==Dynamic) ? Dynamic : _Rows * _Cols };
};
/* ei_plain_matrix_type : the difference from ei_eval is that ei_plain_matrix_type is always a plain matrix type,
* whereas ei_eval is a const reference in the case of a matrix
*/
// template<typename Derived> class MatrixBase;
// template<typename Derived> class ArrayBase;
// template<typename Object> struct ei_is_matrix_or_array
// {
// struct is_matrix {int a[1];};
// struct is_array {int a[2];};
// struct is_none {int a[3];};
//
// template<typename T>
// static is_matrix testBaseClass(const MatrixBase<T>*);
// template<typename T>
// static is_array testBaseClass(const ArrayBase<T>*);
// // static is_none testBaseClass(...);
//
// enum {BaseClassType = sizeof(testBaseClass(static_cast<const Object*>(0)))};
// };
template<typename T, typename StorageType = typename ei_traits<T>::StorageType> class ei_plain_matrix_type;
template<typename T, typename BaseClassType> struct ei_plain_matrix_type_dense;
template<typename T> struct ei_plain_matrix_type<T,Dense>
{
typedef typename ei_plain_matrix_type_dense<T,typename ei_traits<T>::DenseStorageType>::type type;
};
template<typename T> struct ei_plain_matrix_type_dense<T,DenseStorageMatrix>
{
typedef Matrix<typename ei_traits<T>::Scalar,
ei_traits<T>::RowsAtCompileTime,
ei_traits<T>::ColsAtCompileTime,
AutoAlign | (ei_traits<T>::Flags&RowMajorBit ? RowMajor : ColMajor),
ei_traits<T>::MaxRowsAtCompileTime,
ei_traits<T>::MaxColsAtCompileTime
> type;
};
template<typename T> struct ei_plain_matrix_type_dense<T,DenseStorageArray>
{
typedef Array<typename ei_traits<T>::Scalar,
ei_traits<T>::RowsAtCompileTime,
ei_traits<T>::ColsAtCompileTime,
AutoAlign | (ei_traits<T>::Flags&RowMajorBit ? RowMajor : ColMajor),
ei_traits<T>::MaxRowsAtCompileTime,
ei_traits<T>::MaxColsAtCompileTime
> type;
};
/* ei_eval : the return type of eval(). For matrices, this is just a const reference
* in order to avoid a useless copy
*/
template<typename T, typename StorageType = typename ei_traits<T>::StorageType> class ei_eval;
template<typename T> struct ei_eval<T,Dense>
{
typedef typename ei_plain_matrix_type<T>::type type;
// typedef typename T::PlainMatrixType type;
// typedef T::Matrix<typename ei_traits<T>::Scalar,
// ei_traits<T>::RowsAtCompileTime,
// ei_traits<T>::ColsAtCompileTime,
// AutoAlign | (ei_traits<T>::Flags&RowMajorBit ? RowMajor : ColMajor),
// ei_traits<T>::MaxRowsAtCompileTime,
// ei_traits<T>::MaxColsAtCompileTime
// > type;
};
// for matrices, no need to evaluate, just use a const reference to avoid a useless copy
template<typename _Scalar, int _Rows, int _Cols, int _StorageOrder, int _MaxRows, int _MaxCols>
struct ei_eval<Matrix<_Scalar, _Rows, _Cols, _StorageOrder, _MaxRows, _MaxCols>, Dense>
{
typedef const Matrix<_Scalar, _Rows, _Cols, _StorageOrder, _MaxRows, _MaxCols>& type;
};
template<typename _Scalar, int _Rows, int _Cols, int _StorageOrder, int _MaxRows, int _MaxCols>
struct ei_eval<Array<_Scalar, _Rows, _Cols, _StorageOrder, _MaxRows, _MaxCols>, Dense>
{
typedef const Array<_Scalar, _Rows, _Cols, _StorageOrder, _MaxRows, _MaxCols>& type;
};
/* ei_plain_matrix_type_column_major : same as ei_plain_matrix_type but guaranteed to be column-major
*/
template<typename T> struct ei_plain_matrix_type_column_major
{
typedef Matrix<typename ei_traits<T>::Scalar,
ei_traits<T>::RowsAtCompileTime,
ei_traits<T>::ColsAtCompileTime,
AutoAlign | ColMajor,
ei_traits<T>::MaxRowsAtCompileTime,
ei_traits<T>::MaxColsAtCompileTime
> type;
};
/* ei_plain_matrix_type_row_major : same as ei_plain_matrix_type but guaranteed to be row-major
*/
template<typename T> struct ei_plain_matrix_type_row_major
{
typedef Matrix<typename ei_traits<T>::Scalar,
ei_traits<T>::RowsAtCompileTime,
ei_traits<T>::ColsAtCompileTime,
AutoAlign | RowMajor,
ei_traits<T>::MaxRowsAtCompileTime,
ei_traits<T>::MaxColsAtCompileTime
> type;
};
template<typename T> struct ei_must_nest_by_value { enum { ret = false }; };
template<typename T> struct ei_must_nest_by_value<NestByValue<T> > { enum { ret = true }; };
/** \internal Determines how a given expression should be nested into another one.
* For example, when you do a * (b+c), Eigen will determine how the expression b+c should be
* nested into the bigger product expression. The choice is between nesting the expression b+c as-is, or
* evaluating that expression b+c into a temporary variable d, and nest d so that the resulting expression is
* a*d. Evaluating can be beneficial for example if every coefficient access in the resulting expression causes
* many coefficient accesses in the nested expressions -- as is the case with matrix product for example.
*
* \param T the type of the expression being nested
* \param n the number of coefficient accesses in the nested expression for each coefficient access in the bigger expression.
*
* Example. Suppose that a, b, and c are of type Matrix3d. The user forms the expression a*(b+c).
* b+c is an expression "sum of matrices", which we will denote by S. In order to determine how to nest it,
* the Product expression uses: ei_nested<S, 3>::ret, which turns out to be Matrix3d because the internal logic of
* ei_nested determined that in this case it was better to evaluate the expression b+c into a temporary. On the other hand,
* since a is of type Matrix3d, the Product expression nests it as ei_nested<Matrix3d, 3>::ret, which turns out to be
* const Matrix3d&, because the internal logic of ei_nested determined that since a was already a matrix, there was no point
* in copying it into another matrix.
*/
template<typename T, int n=1, typename PlainMatrixType = typename ei_eval<T>::type> struct ei_nested
{
enum {
CostEval = (n+1) * int(NumTraits<typename ei_traits<T>::Scalar>::ReadCost),
CostNoEval = (n-1) * int(ei_traits<T>::CoeffReadCost)
};
typedef typename ei_meta_if<
ei_must_nest_by_value<T>::ret,
T,
typename ei_meta_if<
(int(ei_traits<T>::Flags) & EvalBeforeNestingBit)
|| ( int(CostEval) <= int(CostNoEval) ),
PlainMatrixType,
const T&
>::ret
>::ret type;
};
template<unsigned int Flags> struct ei_are_flags_consistent
{
enum { ret = !( (Flags&UnitDiagBit && Flags&ZeroDiagBit) )
};
};
/** \internal Helper base class to add a scalar multiple operator
* overloads for complex types */
template<typename Derived,typename Scalar,typename OtherScalar,
bool EnableIt = !ei_is_same_type<Scalar,OtherScalar>::ret >
struct ei_special_scalar_op_base : public AnyMatrixBase<Derived>
{
// dummy operator* so that the
// "using ei_special_scalar_op_base::operator*" compiles
void operator*() const;
};
template<typename Derived,typename Scalar,typename OtherScalar>
struct ei_special_scalar_op_base<Derived,Scalar,OtherScalar,true> : public AnyMatrixBase<Derived>
{
const CwiseUnaryOp<ei_scalar_multiple2_op<Scalar,OtherScalar>, Derived>
operator*(const OtherScalar& scalar) const
{
return CwiseUnaryOp<ei_scalar_multiple2_op<Scalar,OtherScalar>, Derived>
(*static_cast<const Derived*>(this), ei_scalar_multiple2_op<Scalar,OtherScalar>(scalar));
}
inline friend const CwiseUnaryOp<ei_scalar_multiple2_op<Scalar,OtherScalar>, Derived>
operator*(const OtherScalar& scalar, const Derived& matrix)
{ return static_cast<const ei_special_scalar_op_base&>(matrix).operator*(scalar); }
};
/** \internal Gives the type of a sub-matrix or sub-vector of a matrix of type \a ExpressionType and size \a Size
* TODO: could be a good idea to define a big ReturnType struct ??
*/
template<typename ExpressionType, int RowsOrSize=Dynamic, int Cols=Dynamic> struct BlockReturnType {
typedef Block<ExpressionType, RowsOrSize, Cols> Type;
};
template<typename ExpressionType> struct HNormalizedReturnType {
enum {
SizeAtCompileTime = ExpressionType::SizeAtCompileTime,
SizeMinusOne = SizeAtCompileTime==Dynamic ? Dynamic : SizeAtCompileTime-1
};
typedef Block<ExpressionType,
ei_traits<ExpressionType>::ColsAtCompileTime==1 ? SizeMinusOne : 1,
ei_traits<ExpressionType>::ColsAtCompileTime==1 ? 1 : SizeMinusOne> StartMinusOne;
typedef CwiseUnaryOp<ei_scalar_quotient1_op<typename ei_traits<ExpressionType>::Scalar>,
NestByValue<StartMinusOne> > Type;
};
template<typename XprType, typename CastType> struct ei_cast_return_type
{
typedef typename XprType::Scalar CurrentScalarType;
typedef typename ei_cleantype<CastType>::type _CastType;
typedef typename _CastType::Scalar NewScalarType;
typedef typename ei_meta_if<ei_is_same_type<CurrentScalarType,NewScalarType>::ret,
const XprType&,CastType>::ret type;
};
template <typename A, typename B> struct ei_promote_storage_type;
template <typename A> struct ei_promote_storage_type<A,A>
{
typedef A ret;
};
#endif // EIGEN_XPRHELPER_H